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Abstract— Current state-of-the-art remote sensing salient
object detectors always require high-resolution spatial context
to ensure excellent performance, which incurs enormous com-
putation costs and hinders real-time efficiency. In this work,
we propose a universal super-resolution-assisted learning (SRAL)
framework to boost performance and accelerate the inference
efficiency of existing approaches. To this end, we propose
to reduce the spatial resolution of the input remote sensing
images (RSIs), which is model-agnostic and can be applied to
existing algorithms without extra computation cost. Specifically,
a transposed saliency detection decoder (TSDD) is designed to
upsample interim features progressively. On top of it, an auxiliary
SR decoder (ASRD) is proposed to build a multitask learning
(MTL) framework to investigate an efficient complementary
paradigm of saliency detection and SR. Furthermore, a novel
task-fusion guidance module (TFGM) is proposed to effectively
distill domain knowledge from the SR auxiliary task to the salient
object detection task in optical RSIs. The presented ASRD and
TFGM can be omitted in the inference phase without any extra
computational budget. Extensive experiments on three datasets
show that the presented SRAL with 224 × 224 input is superior
to more than 20 algorithms. Moreover, it can be successfully
generalized to existing typical networks with significant accuracy
improvements in a parameter-free manner. Codes and models are
available at https://github.com/lyf0801/SRAL.

Index Terms— Auxiliary super-resolution (SR), cross-task
knowledge transfer, multitask learning (MTL), optical remote
sensing image (RSI), salient object detection (SOD).

I. INTRODUCTION

SALIENT object detection (SOD), also named saliency
detection, has recently attracted increasing research inter-

est in optical remote sensing images (RSIs) [1], [2], [3],
[4]. It seeks to identify objects/regions in aerial images, i.e.,
aircraft, ships, bridges, cars, buildings, and other objects, that
most attract human attention. This task provides preprocessing
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Fig. 1. Illustration of our SRAL and mainstream framework for RSI-SOD.

for other visual tasks [5], [6], [7], [8] and facilitates numer-
ous downstream topics, such as object detection [9], change
detection [10], and super-resolution (SR) [11]. For this reason,
inference speed is a crucial factor that needs to be considered
for SOD models.

To achieve a fast inference speed, early SOD methods for
natural scene imagery (NSI) introduce residual learning to
refine saliency maps (SMs) with limited convolutional parame-
ters [12], or deploy pooling layers to replace the usage of con-
volution [13]. However, these improvements have limitations
in terms of efficiency gains. Recently, some approaches have
been devoted to designing lightweight convolution modules or
architectures to decrease the model size. For instance, Cheng
et al. [14] present a flexible self-adaptive convolution and
build an extremely lightweight holistic model based on it.
Liu et al. [15] propose a stereoscopically attentive multiscale
block based on depthwise separable convolution, achieving a
considerable running efficiency for NSI-SOD. A hierarchical
visual perception module is designed in [16] to facilitate
the deployment of real-world SOD applications with a fast
inference speed. These modules have significantly contributed
to the research of lightweight models in the field of NSI-SOD.
However, due to the characteristics of RSIs, it is nontrivial to
directly apply these models to remote sensing scenarios.

In the remote sensing community, lightweight models have
also been explored for RSI-SOD recently. Lin et al. [17]
deploy MobileNetv2 [18] as the encoder and design a
lightweight context block by using 1 × 3, 1 × 5, 3 × 1, and
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5 × 1 convolutions to avoid heavy parameters. FSMINet [19]
discards the common VGG backbone to reduce the parameters
and operations and composes a multiscale network by stacking
massive depthwise separable convolutions and dilation convo-
lutions. Li et al. [20] also utilize depthwise separable operators
to lighten the VGG backbone and decrease the cost in memory
and computation to improve the inference speed.

However, these lightweight models [12], [13], [14], [15],
[16], [17], [18], [19], [20] usually need sophisticated network
designs and more training efforts due to lacking pretrained
weights of backbone. Moreover, without using pretrained
weights, the generalization ability and the performance are
significantly limited due to the small size of the existing
RSI-SOD datasets [2], [3], [4].

In addition, there are two other ways to boost the inference
efficiency of deep models, i.e., pruning [21] and quantiza-
tion [22]. The former prunes less important filters in deep
networks, while the latter reduces parameter complexity by
utilizing low-bit integers without changing the model structure.
These methods require elaborate design and also depend on
regularization techniques like weight decay to bring in sparsity
filters [14], and thus, are rarely explored in the field of SOD.

Reducing the spatial resolution of input RSIs is a simple yet
efficient approach to decrease the number of operations and
improve the running efficiency without modifying the models.
This strategy has been validated in some vision tasks, such
as semantic segmentation [23], human pose estimation [24],
and land cover classification [25]. However, by directly reduc-
ing the input resolution, the performance will significantly
decline owing to the lack of efficient spatial context, especially
clear boundary information. Typically, LR optical RSIs and
small-scale datasets do not meet the learning demands of
deep neural networks [23], while high-resolution (HR) images
require expensive resources in acquisition cost and compu-
tational budget [26]. By reconstructing the edge and texture
information of SR, we can effectively compensate for a certain
degree of performance degradation due to low-resolution (LR)
inputs for RSI-SOD. For instance, [23] and [25] investigate
some vision applications in LR situations, introduce multi-
task learning (MTL) strategy for joint training, and explore
domain knowledge to foster the main task. Based on the
above-mentioned deficiency, it is imperative for the remote
sensing community to develop universal algorithms that can be
extended to real-world applications and resource-constrained
devices with efficient running speed.

To address the above-mentioned issues, we present an
SR-assisted learning (SRAL) paradigm for RSI-SOD tasks.
Specifically, rather than designing lightweight networks to
improve inference efficiency, we aim to investigate the spatial
size of the input LR images. To achieve this, we propose
a learning scheme that can distill SR domain knowledge
to facilitate RSI-SOD and learn HR SMs. Meanwhile, the
inference speed can also be boosted because of the reduced
spatial resolution. Note that the proposed learning paradigm
is different from knowledge distillation [27], i.e., we focus on
cross-task knowledge transfer from SR into RSI-SOD.

As shown in Fig. 1, we present an end-to-end MTL archi-
tecture that feeds LR optical RSIs and produces HR SMs, for

Fig. 2. Left describes the comparison of the five methods on the ORSI-4199
dataset trained at 224 × 224 input without and with the proposed SRAL. The
right shows the inference speed at 224 × 224 and 448 × 448 inputs.

which we introduce an auxiliary SR subtask and construct an
MTL-based model. With respect to the network structure, the
proposed SRAL consists of a shared encoder, a transposed
saliency detection decoder (TSDD), an auxiliary SR decoder
(ASRD), and a novel task-fusion guidance module (TFGM).
Among them, the shared encoder produces multiscale con-
textual features from LR optical RSIs, while the TSDD and
ASRD predict the SOD and SR results, respectively. To enable
the SR branch to explicitly guide the learning of the SOD
branch, the TFGM first integrates predicted features and real
labels and supervises them by a specialized objective function,
which allows the SOD branch to acquire more HR texture
details and focus more on regions of interest. Additionally, the
proposed SRAL can also be easily and successfully extended
to other SOD models and achieve significant performance ben-
efits, as revealed in Fig. 2. In summary, the main contributions
are presented as follows.

1) We first investigate a general and effective paradigm
to decrease the computational cost for RSI-SOD, i.e.,
generating HR SMs by inputting LR optical RSIs to
boost the inference speed for existing models.

2) We propose an MTL-based framework named SRAL,
which exploits the task complementarity of SR and SOD
to enhance the model representative capability and thus
improve the final performance of RSI-SOD.

3) To guide SOD explicitly and effectively, we design
TFGM, which distills the fine-grained structural knowl-
edge from the SR branch into the SOD stream to
enhance the representations without additional inference
costs.

4) Sufficient experiments show that the presented SRAL is
efficient, effective, and model-agnostic. Typically, it sig-
nificantly boosts the performance and efficiency of five
state-of-the-art models, which provides valuable insights
for future research on efficient RSI-SOD models.

The other sections are organized as follows. We summarize
the related studies in Section II and provide the methodology
in Section III. Experimental results and model analysis are
presented in Section IV. Section V illustrates the conclusion.

II. RELATED WORK

This section presents related studies about SOD in optical
RSIs, single-image SR (SISR), and MTL in the remote sensing
community.
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A. Salient Object Detection in Optical RSIs

Early works perform unsupervised strategies to learn
low-level features of optical RSIs [28], [29], [30], such as
brightness, color, texture, edges, and so on. For example,
Huang et al. [30] propose dictionary learning of salient
features and finding numerical solutions through constraint
terms. In recent years, deep learning-based saliency detec-
tion for optical RSIs has become a research hotspot in the
remote sensing community [2], [3], [4], [19], [31], [32],
[33], [34], [35]. Many researchers propose several public
datasets to promote the research of this topic, i.e., ORSSD [2],
EORSSD [3], and ORSI-4199 [4]. Based on these datasets
and state-of-the-art methods for NSI-SOD, numerous studies
have been conducted to foster various problems of RSI-SOD,
such as the complicated background of optical RSIs, irregular
topology, and boundaries of salient objects. Most methods
utilize the fully convolutional network (FCN) paradigms to
tackle the scale variation of remote sensing scenes in a fully
supervised manner. Researchers have introduced some novel
approaches to investigate this topic from various perspec-
tives. For instance, Huang et al. [32] propose a visual atten-
tion mechanism to obtain semantic refinement for RSI-SOD.
EMFINet [31] combines SOD and boundary detection tasks to
build a feature pyramid edge-aware detector. RRNet [33] first
explores the combination of graph convolution and FCN to
improve detection accuracy by reasoning channel and spatial
relations. Currently, Wang et al. [35] first introduce a hybrid
encoder consisting of convolutional neural network (CNN)
and self-attention to capture local and global context adap-
tively and attain state-of-the-art performance on all RSI-SOD
datasets. As revealed in [35], the above-mentioned studies can
generate HR SMs from the HR optical RSIs. However, how to
learn HR saliency results efficiently from LR spatial contexts
is still an open and unstudied issue. In this article, we employ
the MTL framework to build the SR-assisted network and
exploit the intrinsic correlation between RSI-SOD and RSI-
SR tasks while maintaining the detection capabilities as much
as possible and reducing the computational cost.

B. Single Image Super-Resolution

SISR is an essential topic in computer vision, which draws
on available image information to establish LR images and
HR images, and researches on this topic have been widely
investigated in natural and remotely sensed images. The earli-
est approach, SRCNN [36], only contains three convolutional
layers, but its reconstruction performance outperforms various
typical methods based on spatial interpolation. Motivated
by residual learning, VDSR [37] and EDSR [38] can learn
rich complex features by stacking multiple convolutional
layers and improving the convergence speed. In the remote
sensing community, SISR has also attracted the attention
of many researchers. To address the multiscale problem of
RSIs and the coupling relationship between surroundings and
objects, Lei et al. [39] propose LGCNet to combine multiscale
convolutional features of different layers and obtain local
and global feature representations. Ma et al. [40] present an
enhanced method with joint residual connection and wavelet

transform to generate reconstructed RSIs with richer edge
information compared with EDSR [38]. As illustrated in the
above-mentioned literature, SR can benefit other downstream
tasks of optical RSIs. In this study, our primary focus is
not on designing new SR networks, but on how to foster
RSI-SOD tasks with an auxiliary SR task. Furthermore, our
work also paves a way for future research on MTL combined
with SR.

C. MTL of Remote Sensing

MTL [23], [41], [42] is widely explored in remote sens-
ing scenarios, which can be classified into two categories.
The first kind of approach investigates the complementar-
ity among different tasks to construct a unified framework
that simultaneously implements multiple subtasks and obtains
better performance across tasks as much as possible. For
instance, Wang et al. [43] propose a unified model named
boundary-aware multitask network to handle three tasks, i.e.,
height estimation, semantic segmentation, and boundary detec-
tion of RSIs. Recently, Mou and Zhu [44], Yuan et al. [45],
and Heidler et al. [46] propose a series of algorithms to
cope with joint learning among different tasks. A unified
MTL framework is presented to learn vehicle region seg-
mentation and semantic boundary detection based on residual
networks [44]. An approach combining semantic segmentation
and edge detection with a hierarchical attention mechanism is
presented in [46] to monitor the Antarctic coastline effectively.
The second type of approach is to introduce the MTL frame-
works to facilitate the performance of the main tasks. Among
such algorithms, the auxiliary tasks provide complementary
supervision in the training phase and implicitly exploit domain
knowledge to guide the primary task learning. For example,
Liu et al. [47] explore how high-level visual tasks can promote
image denoising and present an MTL solution. Xie et al.
[25] propose an SR deep network for joint supervision of
remote sensing land cover classification, which improves the
pixelwise classification accuracy to some extent. Interestingly,
Aakerberg et al. [48] present a scheme complementary to [25]
that facilitates real-world SR by exploiting an auxiliary seg-
mentation branch, which enables reconstructing sharp and
noise-free HR images. However, only the MTL frameworks for
edge detection with RSI-SOD have ever been investigated [31],
[35], and joint learning of other tasks with RSI-SOD to foster
saliency accuracy has never been exploited in the remote
sensing community. In this work, we first investigate the
MTL architecture of jointly SOD and SR from optical RSIs,
which utilizes SR as auxiliary supervision and distills SR
prior knowledge to guide RSI-SOD by the proposed TFGM
explicitly.

III. METHODOLOGY

The limited resolution of optical RSIs restricts the per-
formance of numerous state-of-the-art RSI-SOD approaches.
As a fundamental image enhancement strategy, the SR-based
methods can enhance the resolution of RSIs and facilitate
other visual tasks to yield better results [49]. Based on the
above-mentioned ideas, we design an MTL-based model that
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Fig. 3. Illustration of the proposed SRAL framework for optical RSI-SOD.

includes a shared residual encoder, TSDD, ASRD, and TFGM
to accomplish the task of efficiently learning HR SMs from LR
optical RSIs, as well as to reduce computational cost and boost
inference speed from the input stream, rather than the model
itself. That is, compared with the HR input-based algorithms,
the proposed SRAL boosts the computational efficiency and
can be extended to other SOD methods while exhibiting
comparable detection results. In this section, we first describe
an overview of the model in Section III-A and illustrate the
framework of SRAL in Section III-B. Then, the methodology
of the presented TFGM is introduced in Section III-C. Finally,
the total loss function is provided in Section III-D.

A. Overview of SRAL

The presented SRAL employs an encoder–decoder frame-
work to predict the HR SMs and super-resolved RSIs, which
are twice the size of the input images. A shared residual
encoder is equipped for feature encoding for SR and SOD
simultaneously, and two heterogeneous decoders are designed
to supervise the central SOD task and the auxiliary SR task,
respectively. As presented in Fig. 3, the proposed learning
paradigm includes a residual encoder for multiscale context
extraction, a TSDD for the main SOD task, an ASRD for the
auxiliary SR task, and cross-task knowledge distillation from
the SR domain into the SOD pipeline to maintain HR saliency
representation. Among them, ASRD is utilized to perform soft
parameter sharing [50] between the SOD decoder and auxiliary
SR decoder. To inject the knowledge of detail reconstruction
captured from the SR task into the SOD branch, a TFGM
is proposed, which considers the interactions between two
branches explicitly by the specialized objective function.

B. Model Architecture

Fig. 3 illustrates the detailed framework of the presented
model, which consists of a shared residual encoder, a TSDD,
an ASRD, and a TFGM, while the detailed structures of the
pyramid pooling module (PPM), EDSR convolution, and the
transposed aggregation block (TAB) are presented in Fig. 4.

1) Shared Encoder: We utilize the ResNet50 backbone [51]
with PPM [52] as the encoder to gradually exploit multiscale
convolutional features and encode rich semantic information.
Suppose the input RSI as I ∈ R3×224×224, and the five scales
of features extracted by the shared encoder are

f1, f2, f3, f4, f5 = Fres(I ) (1)

where Fres(·) denotes the process of the shared encoder, and
f1 ∈ R64×112×112, f2 ∈ R256×56×56, f3 ∈ R512×28×28, f4 ∈

R1024×14×14, and f5 ∈ R2048×7×7 are the produced out-stride
multiscale contextual features, respectively.

To explore the multilevel global context of optical RSIs in
a simple and effective manner, the introduced PPM [52] first
reduces the channel dimension of f5 with a 3 × 3 convolution
to produce a reduced feature defined as f ′

5, then feeds it into
global spatial average pooling layers of various scales, and
obtains f6 ∈ R256×7×7 by channelwise concatenation, that is,

f ′

5 = C3×3( f5) ∈ R256×7×7 (2)

f6 = C1×1
([
P1
(

f ′

5

)
,P2

(
f ′

5

)
,P3

(
f ′

5

)
,P6

(
f ′

5

)])
(3)

where Ci×i (·) indicates the operation of an i × i convolution
with the BatchNorm and the PReLU function [53], Pi (·)

denotes the adaptive average pooling with i × i output, and
[·, ·] represents the channelwise concatenation. The shared
encoder network feeds optical RSIs to obtain multiscale con-
textual features, providing abundant deep semantic information
for thereafter task-specific decoder learning.

2) Transposed Saliency Detection Decoder: To learn HR
SMs from LR optical RSIs, the proposed SOD decoder should
upsample SMs to 2× higher resolution, which is challenging
because of limited spatial contextual information. A simple
solution is adding a spatial upsampling layer, such as bilinear
interpolation or transposed convolution, at the end of the
decoder part. However, directly learning a mapping from LR
to HR is difficult owing to its ill-posed nature. To address
this dilemma, we present a layer-by-layer TSDD based on the
progressively upsampling fusion named TSDD.
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Fig. 4. (a) Illustration of PPM equipped in our model. (b) Detailed structure
of the proposed TAB. (c) Framework of the EDSR convolution [54].

As shown in Fig. 3, TSDD adopts a similar structure to
UNet [55] and FPN [56] for skip connection and layer-
by-layer fusion with the encoder’s features. With respect
to how to integrate adjacent features and produce 2× HR
output information, the TAB is designed. Specifically, there
are five TABs to generate multiscale decoder features for
SOD, which can be defined as t1∼t5. TAB first obtains the
initial fused features by channelwise concatenation and a
1 × 1 convolution, introduces transposed convolution to learn
the upsampled features adaptively, and finally refines them by
using a 3 × 3 convolution. Regarding the input x ∈ RC1×H×W

and y ∈ RC2×H×W , TAB aggregates them and outputs features
with the size of 64 × 2H × 2W as illustrated in Fig. 4(b).
Mathematically

FTAB(x, y) = C3×3
(
FTC

(
C1×1

([
x, y

])))
(4)

where FTC(·) and FTAB(·) denote the function of transposed
convolution and TAB, respectively. As shown in Fig. 3, t5 is
completely mapped from the encoder, i.e., t5 = FTAB( f5, f6),
while the others are performed through the decoder’s upper-
level input and skip connection from the encoder as follows:

ti = FTAB(ti+1, fi ), i = 4, 3, 2, 1 (5)

where ti ∈ R64×448/2i
×448/2i

, the predicted HR SMs defined as
p1∼p5 ∈ R1×448×448 are generated from these rich semantic
features by a 3 × 3 convolution and 2i

× bilinear interpolation
for deep supervision [52], and p5 is the final predicted SM.
Inspired by FPN [56], TSDD also performs top-down feature
fusion and continuously increases the spatial resolution of
the out-stride features to recover HR SMs in an incremental
manner, which alleviates the difficulty of direct upsampling by
the factors of 22∼6.

3) Auxiliary Super-Resolution Decoder: Previous studies
have proved that SR can help to facilitate other high-level
tasks, e.g., semantic segmentation [57], object detection [58],
and change detection [59]. Particularly, Wang et al. [24]
propose an MTL-based model to achieve better performance
for semantic segmentation and human pose estimation with
the help of an auxiliary SR network. However, these learning
paradigms have not been explored in the field of RSI-SOD,
and we make the first attempt and some progress in this
article. To promote the detection performance by MTL strat-
egy, an effective and simple ASRD is presented motivated
by well-known SR networks [51], [54] to reconstruct the HR
optical RSIs from the multiscale decoder features. Specifically,
we utilize the shallowest and deepest contextual information
of the encoder to reconstruct HR RSIs and explore more
generalized constraints. As shown in Fig. 3, ASRD employs
several convolutional operations to reduce the channel dimen-
sion gradually, i.e., feeds f2 and f6 to obtain the integrated
feature as

fmid = C3×3
(
C3×3

(
C3×3

([
C3×3( f2),Fup( f6)

])))
(6)

where the size of fmid is 64 × 56 × 56, and Fup(·) denotes
the spatial bilinear interpolation function.

As for how to recover the HR representation of RSIs,
we alternately deploy the deconvolution and EDSR convo-
lution [54] to gradually recover the spatial resolution while
continuously shrinking the feature channels (64→32→16→3
revealed in Fig. 3). Hence, the final predicted HR RSI is
defined as

psr = FTE(FTE(FTE( fmid))) ⊕ F↑2×(I ) (7)

where FTE(·) represents the combined operations of decon-
volution and EDSR convolution [54], F↑2×(·) indicates the
2× upsampling interpolation, and psr ∈ R3×448×448. Fig. 4(c)
presents a detailed illustration of EDSR convolution, a modi-
fied residual convolution that performs better than the original
one. Regarding the input X ∈ RC×H×W , the operation of
EDSR convolution can be represented as follows:

FEDSR = C3×3(FReLU(C3×3(X))) ⊕ C1×1(X) (8)

where FReLU(·) denotes the ReLU function, FEDSR(·) indi-
cates the operation of EDSR convolution, and ⊕ denotes
elementwise summation. By means of this simple scheme, the
model can supervise both SR and SOD and implicitly perform
knowledge transfer from the SR branch to the SOD stream.

C. Task-Fusion Guidance Module
How to further enhance the performance gain of the SR

auxiliary task to the RSI-SOD main task? The most straight-
forward approach is to inject the representation learned from
SR into the SOD branch by explicitly supervised learning [24],
[49]. Previous works directly perform structural similarity [23]
or spatial cosine similarity [25] between the output features of
the dual streams. However, this strategy is shown not to work
well for RSI-SOD through our experiments. Based on this defi-
ciency, we present TFGM to distill the SR knowledge to the
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saliency detection network via the specialized objective func-
tions, which both consider the correlation between decoder
features and ground truth (GT) products.

To obtain the knowledge representation from TSDD and
ASRD, we deploy two 3 × 3 convolutions at the end of
them to capture two feature expressions, i.e., fsod, fsr ∈

R3×448×448. As shown in Fig. 3, TFGM first integrates the
decoder’s output features and GT of two branches through
elementwise multiplication. Thus, the subjects supervised by
the loss function are f sod

· f sr and I sod
· I sr, where I sod and

I sr indicate the GT SMs and HR RSIs with the dimension of
3 × 448 × 448. It can be seen that we optimize the TFGM by
using two different streams from Fig. 3. With respect to the
first branch, we present the pixel similarity loss to explore the
spatial difference between the predicted elementwise product
and the GT product. For f sod

· f sr, we first downsample it to
a 3 × 28 × 28 matrix (16× average pooling) because of the
high memory overheads and reshape it as a 3 × 784 one. The
affinity matrix can be represented as

S f
i, j =

(
f sod
i · f sr

i∥∥ f sod
i · f sr

i

∥∥
1

)T(
f sod

j · f sr
j∥∥ f sod

j · f sr
j

∥∥
1

)
(9)

where S f
i, j refers to the self-correlation between i th and j th

element of the fused f sod
i · f sr

i , and we can calculate the cosine
similarity matrix of GT product by the same way, i.e., S f and
S I , the affinity matrix of f sod

· f sr and I sod
· I sr, respectively.

Then, the spatial similarity loss is captured as

Lsimilar =
1

W 2 H 2

W H∑
i=1

W H∑
j=1

∥∥∥S f
i, j − S I

i, j

∥∥∥
2
. (10)

Here, W and H are both equal to 28. This supervision is
comparable to a spatial attention mechanism and can guide the
SOD branch to absorb the fine-grained structural information
of the SR branch. As for the second one, we introduce a
consistency-regularized loss to compute the L1 normalization
between the fused features of both decoders and the GT
product, which further aims to make the SR branch focus more
on the salient regions’ boundaries in RSIs and supervise the
SOD branch to pay more attention to salient objects, that is,

Lconsist =
1

C ′W ′ H ′

∥∥ f sod
· f sr

− I sod
· I sr

∥∥
1 (11)

where the values of C ′, W ′, and H ′ are 3, 448, and 448,
respectively. With the help of this function, our model will
tend to detect the various salient objects precisely, as revealed
in experiments. The total loss of TFGM is the combined
summation as follows:

LTFGM = Lsimilar + Lconsist. (12)

D. Total Loss Function of the Model

To achieve the joint learning of the whole model in the
training process, we integrate the loss item of TSDD, the loss
item of ASRD, and the loss item of TFGM into a total loss

function, and thus, the entire model can be optimized end-to-
end. The total loss can be defined as

Ltotal = LSOD + λ2LSR + λ3LTFGM (13)

where LSOD is the combination of the binary cross-entropy
loss and IoU loss with deep supervision among p1∼p5, and
LSR is the mean square error loss between psr and I sr, and
λ2 and λ3 are utilized to balance the tasks while highlighting
the main SOD task, and the above-mentioned loss items are
represented as

Li
SOD = Li

BCE + Li
IoU (14)

LSOD =
(
L1

BCE + L1
IoU

)
+

5∑
i=2

Li
BCE + Li

IoU

2i−2 (15)

where Li
BCE and Li

IoU are imposed on the ith output of saliency
decoder, namely, ti . We perform deep supervision on each
stage of TSDD and contribute to the final saliency results.
Mathematically, the detailed definition of these loss functions
is illustrated as

LBCE(x, y) =
1
N

N∑
i=1

(−yi log(xi ) − (1 − yi )log(1 − xi ))

(16)

LIoU(x, y) = 1 −

∑N
1

(
x j ⊗ y j

)
+ 1∑N

1

(
x j ⊕ y j − x j ⊗ y j

)
+ 1

(17)

LSR
(

psr, I sr)
=

1
3N

3N∑
i=1

(
psr

i − I sr
i

)2 (18)

where N denotes the total number of pixels of x , y, and
i reveals the index of each pixel. x j ⊕ y j and x j ⊗ y j

indicate the summation product and multiplication product of
the predicted SM and its label at pixel j , respectively. Since
these loss terms have significantly different value ranges, even
at an order of magnitude, it is very challenging to balance
these parameters in a multitask manner. Empirically, we adopt
manual hyperparameters tuning and observe that the values of
λ2 and λ3 are equal to 100, and 1 work well in Section IV-C.

IV. EXPERIMENTS

A. Experimental Protocol

1) Datasets: There are three public datasets released to the
community, i.e., ORSSD [2], EORSSD [3], and ORSI-4199
[4], on which we organize experiments in this article.

ORSSD: It consists of 800 optical RSIs, including
600 images for training and 200 images for testing.

EORSSD: This dataset is an extension of ORSSD. Com-
pared with ORSSD, covering more remote sensing scenes and
a wider variety of salient objects is more challenging. It is
divided into 1400 images for training and the rest for testing.

ORSI-4199: It is the most diverse dataset for RSI-SOD,
containing 4199 optical RSIs, of which 2000 images are
adopted for training and 2199 ones for testing. Furthermore,
it defines nine scene attribute types to help us evaluate different
algorithms more comprehensively.
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2) Evaluation Metrics: To quantitatively measure various
methods, we plot PR and F-measure curves to highlight the
methods with better performance. Besides, three numerical
metrics are employed for quantitative evaluation as follows.

MAE [60]: It defines the mean pixelwise error between the
predicted SM with the GT, that is,

MAE =
1

m × n

m∑
i=1

n∑
j=1

|SM(i, j) − GT(i, j)| (19)

where m and n denote the length and width of SMs,
respectively.

F-Measure [61]: As a metric that balances the Precision
and Recall of saliency detection, which is defined as

Fβ =

(
1 + β2

)
× Precision × Recall

β2 × Precision + Recall
(20)

where the value of β2 is equal to 0.3 as suggested in [61].
S-Measure [62]: It estimates the structural information

similarity between the predicted map and its label from region-
aware (Sr ) and object-aware (So) levels as follows:

Sm = α × So(SM, GT) + (1 − α) × Sr (SM, GT) (21)

where α is 0.5 to balance So and Sr as recommended in [62].
Finally, we report the structure similarity (SSIM) scores [63]

for attributes analysis on the ORSI-4199 dataset, defined as

SSIM(x, y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ 2

x + σ 2
y + C2

) . (22)

Here, σx and σy indicate the standard deviation of x and
y, respectively. µx and µy are the means, and σxy is the
covariance. We calculate SSIM by adjusting both C1 and
C2 to 0, referring to [35].

3) Implementation Details: Following the previous
study [35], we train and test the models on three separate
datasets, respectively, and the previous data augmentation
strategies are followed to enrich the training samples.
We employ the source code of all compared algorithms for
a fair reproduction, and all detection results are computed
at 448 × 448. All CNN-based methods [3], [4], [12], [13],
[14], [15], [16], [17], [19], [20], [24], [32], [33], [34],
[35], [65], [66], [67], [68], [69], [70] are implemented
on a single NVIDIA GeForce RTX 3090 GPU based on
PyTorch 1.8 toolbox in the Linux system. With respect to
the proposed method, we load the pretrained weights of
ResNet50 [51] and utilize the SGD optimizer to train the
model with a batch size of 8, an initial learning rate of
0.002, a momentum of 0.9, and a weight decay of 5e-4.
The polynomial learning rate scheduler is employed in
the iteration process with the learning rate updated by the
formula: lr = 0.002 × (1 − (iter/maxiter))0.9. Referring to
previous SR deep learning-based models, the SR branch is
trained and supervised under YCbCr color space and then
converted to RGB space during the inference phase. The
proposed SRAL inputs 224 × 224 optical RSIs and outputs
448 × 448 saliency results. During the testing process, both
the presented ASRD and TFGM are removed, so that no
additional parameters or computational costs are introduced

compared with the baseline. In contrast, the inference speed
of the SRAL has more merit.

4) Baselines: As illustrated in Table I, to discover the pros
and cons of the presented approach, we report the performance
of 24 baselines on three datasets for a fair comparison. These
algorithms include two traditional methods (i.e., LC [64] and
FT [61]), six deep learning-based models for NSI-SOD (i.e.,
NLDF [65], DSS [66], PFAN [67], SCRN [68], GateNet [69],
and F3Net [70]), seven deep learning-based methods for
RSI-SOD (i.e., SARNet [32], DAFNet [3], MJRBM [4],
RRNet [33], FSMINet [19], ACCoNet [34], and HFANet [35]),
five lightweight models for NSI-SOD (i.e., RAS [12], PoolNet
[13], CSNet [14], HVPNet [16], and SAMNet [15]), three
lightweight LR input-based models for RSI-SOD (i.e., Corr-
Net [20], MSCNet [17], and FSMINet [19]), and an SR-guided
model for semantic segmentation, i.e., DSRL [24].

B. Comparison With State-of-the-Art Methods

In this section, we perform the quantitative analysis, quali-
tative analysis, attribute-based analysis, and running efficiency
analysis of numerous state-of-the-art approaches.

1) Quantitative Comparison: As illustrated in Fig. 5, the
PR and F-measure curves of our model in red outperform all
competitors on three datasets, i.e., the PR curves of SRAL are
closer to the upper right corner of Fig. 5 and its F-measure
curves can cover the largest areas. Remarkably, our algorithm
has the most significant superiority on the ORSI-4199 dataset.

To perform a more intuitive analysis, we report three
metrics, i.e., Fβ , MAE, and Sm of 24 approaches, in Table I.
Four observations can be concluded as follows. First, any deep
learning-based model outperforms the best-known traditional
methods, LC [64] and FT [61], revealing the suitability of
deep networks for RSIs. Second, since RSI-SOD methods
are specialized for remote sensing scenes, most such meth-
ods are superior to NSI-SOD approaches, which illustrate
the necessary design of specialized salient object detectors
for RSIs. Third, SRAL outperforms various HR or LR
input-based lightweight methods for NSI-SOD and RSI-SOD,
i.e., CSNet [14], HVPNet [16], SAMNet [15], CorrNet [20],
MSCNet [17], and FSMINet [19]. The above-mentioned phe-
nomenon demonstrates that the lightweight algorithms we
illustrated in Section I cannot achieve the desired performance
due to the lack of pretraining weights and the small scale of the
RSI-SOD datasets, despite the low number of parameters and
operations. Finally and most importantly, the proposed SRAL
can achieve comparable results to competitors by feeding
fewer spatial contexts on all datasets. This provides a feasible
solution for learning HR SMs from LR and low-quality RSIs.
Table I provides the results of FSMINet [19] trained with
224 × 224 and 448 × 448 input, where the latter has better
numerical results, which justifies the challenging issue that
the performance of RSI-SOD decreases significantly when the
input resolution of RSIs is reduced twice. This is precisely
the motivation for this work. HFANet [35], F3Net [70], and
GateNet [69] are the most competitive approaches among all
competitors, while HFANet is our recent work that achieves
the optimal results in four metrics. Compared with them, the
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TABLE I
QUANTITATIVE PERFORMANCE ON THREE OPTICAL RSI-SOD TEST DATASETS WITH 24 STATE-OF-THE-ART APPROACHES. THE TOP THREE RESULTS

ARE MARKED IN RED, GREEN AND BLUE, RESPECTIVELY

Fig. 5. Comparisons of PR and F-measure curves about 17 algorithms on three RSI-SOD datasets, and our method is marked in red.

presented SRAL reduces the input scale of RSIs but still
maintains decent results, e.g., it offers the only solution with
Fβ greater than 0.85 and Sm greater than 0.87 on the most
challenging ORSI-4199 dataset.

2) Qualitative Comparison: As revealed in Fig. 6, typical
saliency results on the ORSI-4199 dataset are presented for
qualitative visualization. Due to space limitations, we only

show the detection results of two NSI-SOD algorithms, eight
RSI-SOD methods, and two lightweight approaches with the
most competitive performance. These typical scenes include
large-scale aircraft, multiple airplanes, tiny vehicles, roads
with irregular topology, man-made buildings with complicated
edges, lakes with low contrast, and so on. We can observe
that the proposed SRAL predicts the most complete and
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Fig. 6. Typical visualized maps with 12 state-of-the-art methods on the ORSI-4199 dataset, including two NSI-SOD approaches, eight RSI-SOD algorithms, and
two lightweight methods on different patterns. (a) Optical RSIs. (b) GT. (c) GateNet [69]. (d) F3Net [70]. (e) SARNet [32]. (f) DAFNet [3]. (g) MJRBM-V [4].
(h) RRNet [33]. (i) FSMINet [19]. (j) ACCoNet-V [34]. (k) HFANet [35]. (l) HVPNet [16]. (m) MSCNet [17]. (n) SRAL (Ours).

precise SMs in these scenarios, while the competitors always
suffer from deficiencies, such as incomplete salient objects,
interference from the complex background, and unclear edges.

3) Attribute Analysis: The ORSI-4199 dataset provides nine
scene patterns for a more intuitive comparison, i.e., big salient
object (BSO), complex scene (CS), complex salient object
(CSO), incomplete salient object (ISO), low contrast scene
(LCS), multiple salient objects (MSO), narrow salient object
(NSO), off center (OC), and small salient object (SSO).
We present the SSIM scores of SRAL and 16 competitive
approaches in Table II, which reveals some findings that are
not shown in Table I. First, some methods that do not perform
significantly in Table I, such as SARNet [32], HVPNet [16],
and MSCNet [17], yet reach the top three performances
in some scenarios. The above-mentioned phenomenon illus-
trates that the performance preferences of various models for

different remote sensing scene attributes cannot be shown
by the metrics MAE or Fβ on the whole test set. Second,
HFANet [35], which achieves competitive results in Table I,
has mediocre performance in various scenarios, which reflects
the inconsistency between the performance on individual sce-
narios and on the entire dataset. Besides, the proposed SRAL
has the most advantages on CS and LCS attributes, yet has
some deficiencies in both CSO and OC and is the most
disadvantaged on MSO. We blame the difficulties exhibited
by SRAL in both cases on the lack of contextual information
for multiple objects owing to the LR of the input RSIs.
Most intuitively, SRAL ranks first in the average score of all
scenarios, indicating that the proposed method is most robust
to all scenarios, while other algorithms perform very poorly
in some attributes, e.g., the attribute scores of SARNet [32]
in the first four scenarios.
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Fig. 7. Illustration of the tradeoffs between F-measure versus number of parameters, FLOPs, and inference speed for 13 state-of-the-art methods.

TABLE II
ATTRIBUTE-BASED PERFORMANCE ON THE ORSI-4199 DATASET [4]. THE AVERAGE SSIM SCORES FOR PARTICULAR ATTRIBUTES ARE PRESENTED.

THE AVG. ROW REPORTS THE AVERAGE RESULTS FOR NINE ATTRIBUTES, AND TOP THREE SCORES IN EACH LINE ARE
MARKED IN RED, GREEN, AND BLUE, RESPECTIVELY

4) Efficiency Comparison: To show the compromise
between accuracy and efficiency, we draw three scatter plots
to demonstrate the relationship between F-measure versus
the model parameters, floating-point operations (FLOPs), and
inference speed of 13 approaches on the ORSI-4199 test
dataset in Fig. 7. In the curves of F-measure versus parameters
and F-measure versus FLOPs, SRAL is positioned at the top
left, revealing that our method is less computationally expen-
sive with high accuracy. Specifically, our model delivers excel-
lent performance with 31.94M parameters, achieving the best
tradeoff among all compared algorithms. It can be seen that
although some lightweight algorithms, such as HVPNet [16],
SAMNet [15], and MSCNet [17], significantly reduce the
number of parameters by designing lightweight networks, and
the FLOPs reach extremely low orders of magnitude. However,
they do not achieve satisfactory results in terms of F-measure,
which illustrates a common problem of lightweight methods,
i.e., the limited parameters degrade the model’s generalization
ability, and thus, make it perform worse in complex remote
sensing scenarios. In the curve of F-measure versus speed,
the presented approach is located in the upper right corner,
demonstrating an excellent tradeoff between detection accu-
racy and running speed. MSCNet [17] is a lightweight method
designed explicitly for RSI-SOD, which has a competitive
performance as revealed in Table I. However, we notice
that its number of parameters and FLOPs are at the lowest
level without an appreciable inference speed, which illustrates
the inconsistency between the parameters and FLOPs versus
inference speed. Based on this discovery, we determine that
the approaches designed for NSI-SOD are not applicable to

RSI-SOD due to the complex background of optical RSIs
and the irregular topology of the salient objects, so we
need to explore lightweight networks specifically designed for
RSI-SOD in the future investigations. Notably, our algorithm
dominates the inference speed because the FLOPs are only
1/4 of that in the case of 448 × 448 input, so the speed is
considerably boosted. It shows that the way to improve the
efficiency is not only to propose lightweight models but also
to adjust the FLOPs by controlling the input resolution of
RSIs effectively, e.g., the proposed SRAL. In summary, we can
conclude that the presented model yields an excellent tradeoff
between input resolution, accuracy, number of parameters,
FLOPs, and speed.

C. Ablation Study
We first figure out the suitable settings of the combined

objective function and reveal the effects of the presented
components, i.e., TSDD, ASRD, and TFGM, respectively.

1) Baseline Setup: We adopt ResNet50 [51] with PPM [52]
as encoder, and FPN [56] structure with deep supervision as a
decoder to build the baseline model, which feeds 448 × 448
RSIs as input. The hyperparameters are set consistently in
Tables III and IV for a fair comparison. As presented in
Table IV, the baseline can reach an MAE of 0.0335 and Fβ of
0.8540 with a speed of 50.64 ft/s on the ORSI-4199 dataset.

2) Hyperparameter Tuning: Table III presents hyperpa-
rameter tuning analysis on the ORSI-4199 dataset. First,
when considering only LSOD + λ2LSR, we set the value of
λ2 from 10 to 500 based on the a priori knowledge that
LSR has a lower magnitude than LSOD and SR performs
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TABLE III
LOSS WEIGHTS TUNING ANALYSIS ON THE ORSI-4199 DATASET

TABLE IV
ABLATION EXPERIMENTS ON THE ORSI-4199 [4] DATASET

secondary supervision as an auxiliary task. We observe that
when λ2 = 100, the model exceeds by a considerable margin
compared with λ2 = 10 or 500, and thus, we choose the
value of 100 for λ2 to train. On this basis, we define λ3 as
1 to make these loss items ranges comparable for further
experiments. Table III reveals that when a partial or complete
TFGM module is introduced, there are certain boosts on all the
F-measure metrics, justifying the significance of the proposed
TFGM in facilitating the RSI-SOD task. We find that the
performance boost is most noticeable when the LSR and
LTFGM are introduced, i.e., both F-measure and MAE reach
their peaks. In addition, two control experiments when only
cosine similarity loss (Lsimilar) or L1 constraint loss (Lconsist)
is retained are also shown in Table III, and the strengths of
both subloss functions are demonstrated separately according
to the metrics.

3) Effects of TSDD, ASRD, and TFGM: In this section,
ablation experiments and visualization are conducted to justify
the effects of the presented components. Overall, we notice
that the detection performance shows a continuous increasing
trend in the quantitative results in Table IV. Observing the first
and second rows about the numerical results of baseline under
224 × 224 and 448 × 448 training, respectively, the former
performance is much worse than that of the latter, confirming
that the LR optical RSIs significantly limit the prediction
of HR representation. We propose TSDD to decode the HR
SMs step by step in a spatial learning manner instead of
fixed sampling calculations, thereby decreasing the difficulty
of learning HR SMs from LR inputs. Comparing the second
and third rows of Table IV reveals the incremental contribution
of the proposed TSDD to RSI-SOD. To introduce an MTL
framework for learning HR SMs from LR inputs, we design
the ASRD to reconstruct the HR detailed representation and
promote the results of SOD. In contrast to the third and fourth
rows, it is shown that the MTL strategy contributes positively
to the RSI-SOD task, i.e., implicit MSE supervision and joint
MTL can boost the performance. Furthermore, we propose
TFGM explicitly bootstrap the SOD task from the SR task
and present two practical loss terms. The performance gains
shown in Table IV demonstrate that it effectively transfers
knowledge from SR. The reduction in input resolution also

Fig. 8. SMs and feature visualizations of ablation study. (a) Optical RSIs.
(b) GT. (c) and (d) Baseline + TSDD. (e) Baseline + TSDD + ASRD. (f) and
(g) Baseline + TSDD + ASRD + TFGM. (h) Baseline with 448 × 448 input.

significantly shrinks the FLOPs of the model, which, in turn,
enables the inference speed to increase from 50.64 to 70 ft/s.

Fig. 8 displays some typical predictions and feature visual-
ization results, which help us to draw the following findings:
first, the proposed SRAL utilizes an MTL framework and
TFGM to concentrate the model more on the saliency regions,
e.g., rows 1, 2, 3, and 6; second, compared with baseline +

TSDD, our entire model’s antiinterference ability to complex
background of optical RSIs is enhanced, e.g., row 3; third, the
proposed model shows some benefits for learning boundaries
and object completeness, e.g., rows 2, 4, and 5.

D. Model Analysis
We perform further experiments to show the convergence of

the model and the effectiveness of the SR auxiliary network,
compare the guidance efficiency of TFGM, and illustrate
the model-agnostic ability and the failure analysis of SRAL,
respectively.

1) Multiloss Convergence Analysis: To reveal the change
of loss with training and convergence of our proposed model
during training, we plot the curves of all types of losses versus
epoch on the three datasets in Fig. 9. These curves about
the ORSSD, EORSSD, and ORSI-4199 datasets show that all
types of losses continue to decrease in value with training
iterations on both the training and test datasets, leveling off
and reaching convergence at the end of the training, and thus,
the proposed model is stable, reliable, and convergent.

2) Visualization of Auxiliary Super-Resolution Task: To
demonstrate the performance of SRAL for the SR subtask,
we report the qualitative and quantitative results, as shown
in Fig. 10 and Table V. The proposed model can recon-
struct HR images with more complete structural details and
smoother gradients compared with LR images in Fig. 10.
We reproduce the DSRL [24], and modify the corresponding
network structure to make it applicable to our task and conduct
experiments. By observation, DSRL [24] is unable to achieve a
quantitative performance comparable to our proposed SRAL
for both the SR and SOD tasks. We summarize the mainly
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Fig. 9. Loss curves on three RSI-SOD datasets. Each row shows, in turn, the
loss curves on the ORSSD, EORSSD, and ORSI-4199 datasets, respectively.

Fig. 10. Visualization of SR subnet of our SRAL. (a) and (c) LR images.
(b) and (d) Predicted SR images of SRAL. Zoomed-in view for the best view.

possible reasons as follows: 1) the methodology designed
by DSRL [24] aims at the semantic segmentation of natural
images, which maybe result in the basic decoder network is
not suitable for RSI-SOD. (2) There is no knowledge transfer
module designed for the specific characteristics of the SOD
task in [24], while we design a novel TFGM for efficient
RSI-SOD, further increasing the performance gap between
DSRL and our SRAL.

3) Guidance Comparison of TFGM: To reveal the superior-
ity of TFGM for guiding RSI-SOD, we report several famous
MTL training strategies (i.e., uncertainty [71], DWA [72],
and GradVac [73]), and two multitask guidance methods for
remote sensing (i.e., Zhang et al. [23] and Xie et al. [25]),
as illustrated in Table VI. First, the method can obtain the
results of 0.0322 and 0.8505 in terms of MAE and Fβ ,
respectively, when only the SOD and SR branches are jointly
supervised for training. Second, we discover that state-of-the-
art MTL training strategies are not applicable to the RSI-SOD
task, because the original intention of these methods is to
exploit the union between multiple loss terms and improve
the performance on all subtasks. This is contrary to our design
philosophy, where our proposed SRAL treats SR as an auxil-
iary task and explores its possibility of facilitating RSI-SOD,
and thus, these MTL-based methods yield poor results. Then,
we introduce two recent learning approaches [23], [25] that
use an auxiliary task to guide the main task in the remote

TABLE V
QUANTITATIVE SR PERFORMANCE COMPARISON STUDY

TABLE VI
GUIDANCE COMPARISON OF TFGM ON THE ORSI-4199 DATASET

sensing community. Both methods have a gain, yet are limited
in both Sm and Fβ scores. The studies of Zhang et al. [23] and
Xie et al. [25] are not specifically designed for the RSI-SOD
task and do not consider feature integration of SR and SOD,
as well as spatial guidance of SR for SOD and saliency
enhancement of SOD for SR. Typically, they only introduce
SSIM loss or cosine similarity loss on the features of two tasks
for supervision in the training phase, while failing to achieve
superior performance boosts for the specialized RSI-SOD task.
Finally, the presented TFGM yields the optimal numerical
results, emphasizing the effectiveness of the two loss terms
designed explicitly for RSI-SOD.

4) Model-Agnostic Advantages of SRAL: To further prove
the advantages of the SRAL, we apply our learning framework
to five typical approaches, e.g., two famous networks for nat-
ural images, PSPNet [52], DeepLabv3+ [74], two mainstream
NSI-SOD methods, DSS [66], SCRN [68], and an updated
approach for RSI-SOD, FSMINet [19]. Among them, PSPNet,
DeepLabv3+, and SCRN employ ResNet50 as the backbone,
DSS utilizes VGG16 as the backbone, while FSMINet designs
its particular backbone, and they propose various decoder
structures. A series of compared experiments on three datasets
about the above five algorithms trained at 224 × 224 input with
and without the presented SRAL are reported in Table VII.

Overall, we find that the methods that integrate the proposed
SRAL learning strategy show significant improvements in
most metrics on all datasets. Among them, PSPNet [52] and
DeeplabV3+ [74] adopt a plain encoder–decoder paradigm
and utilize the efficient ResNet50 as the encoder without intro-
ducing any complex structured modules, which brings a sig-
nificant performance boost to MTL. By contrast, SCRN [68]
employs multiple stacked cross modules to refine the saliency
results, and DSS [66] introduces unique and complicated
shortcut connections with VGG16 as the encoder, which all
limit the boosting effect brought by the proposed SRAL.
Notably, the network structure of FSMINet [19] is completely
customized without reference to any mainstream encoders, and
our framework still has performance gain on this approach,
justifying the generalization of SRAL to various network
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Fig. 11. Visualization of several typical SMs of five algorithms with and without the proposed SRAL, trained at 224 × 224 inputs on the ORSI-4199
test dataset. (a) Optical RSIs. (b) GT. (c) DSS [66]. (d) DSS (ours). (e) PSPNet [52]. (f) PSPNet (ours). (g) DeepLabv3+ [74]. (h) DeepLabv3+ (ours).
(i) SCRN [68]. (j) SCRN (ours). (k) FSMINet [19]. (l) FSMINet (ours).

TABLE VII
QUANTITATIVE RESULTS OF FIVE TYPICAL METHODS ON THREE RSI-SOD DATASETS WITH AND WITHOUT THE SRAL FRAMEWORK

structures of different algorithms. Therefore, the proposed
SRAL is model-agnostic for the RSI-SOD task that is not
specialized to a particular network structure but has a positive
facilitation effect in many algorithms.

As illustrated in Fig. 2, our proposed SRAL can achieve
considerable performance gains in the scenario of input LR
RSIs under a condition that does not introduce additional
computational costs. Compared with input HR RSIs, our
strategy can boost the inference speed as much as possible,
which creates favorable conditions for the algorithm to be
deployed on resource-constrained and real-world devices.

To reveal how the proposed SRAL promotes the perfor-
mance of the RSI-SOD task, we provide some typical pre-
diction results of the above-mentioned five methods on the
ORSI-4199 dataset, as shown in Fig. 11. The models trained
with SRAL achieve better results than the original models
in various scenarios, and we summarize the advantages as

follows. First, SRAL enables the SOD branch to maintain
rich HR representation and focus more on the foreground
regions through the MTL framework and feature guidance
learning, as in rows 1 and 2, which alleviates the interference
issue of the complex background of optical RSIs. Second,
observing rows 3 and 4, the proposed SRAL generates more
accurate segmentation of local regions of saliency objects
and enhanced learning ability for complete saliency objects
by benefiting from the auxiliary supervision of HR and the
consistency constraint of SOD and SR. Third, for saliency
objects with irregular topology and complex edges, SRAL can
enhance the boundary recognition capability, and the HR SMs
predicted by SRAL have clearer image details instead of many
blurs.

5) Failure Cases and Future Work: Despite the pro-
posed SRAL achieving superior performance on all RSI-SOD
datasets, there are still some hard samples. To analyze the
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Fig. 12. Failure cases of our proposed approach. (a) and (d) Optical RSIs.
(b) and (e) GT. (c) and (f) Predicted maps of our SRAL.

shortcomings of the SRAL and find directions for future
investigations, some typically failed samples are illustrated
in Fig. 12. First, the model always identifies the background
regions in the middle of the neighboring objects or background
regions within the salient regions as the foreground, and thus,
results in false positive predictions, such as rows 1 and 2 in
Fig. 12. Second, for the foreground object part that is con-
fused with the background, our detector may cause a missed
detection and determine it as a background region, as revealed
in row 3. Third, subtle contrast differences between the salient
and nonsalient objects cause our detector to potentially identify
nonsalient targets as foreground. For instance, in row 4 of
Fig. 12, the airplanes and airport buildings are very similar
in color, with little difference other than the edges and target
structure, and our method incorrectly recognizes the airport
buildings as salient objects. In addition, the proposed SRAL
fails to capture contextual information about the small objects
close to the boundary part of the RSI, always causing missed
detection. As presented in row 5, for individual vessels appear-
ing at different locations in the optical RSIs, our detector can
well segment the vessels located in the central region of the
RSIs well while ignoring the vessels near the boundary part of
the RSIs. Finally, SRAL performs poorly on some tiny salient
objects in optical RSIs, such as the last row in Fig. 12.

Based on our analysis, the reasons for the above failures
are as follows. First, since our model feeds LR RSIs and they
cannot provide sufficient contextual information desired by
the deep network, and thus, it has difficulty in recognizing
tiny objects, especially those near the boundaries of RSIs,
which always causes missed detection because of the absence
of contextual information around themselves. Second, our
model cannot extract the long-distance independence of salient

objects because it is based entirely on the local inductive bias
of convolution operations, which leads to partial incomplete or
over-segmentation for some salient objects. Third, we propose
TFGM to guide and supervise by feature fusion of SR and
SOD branches for the main task, which makes the model
focus more on the most salient objects and may reduce
the attention to those foreground regions mixed with the
background. Finally, to train the model on space-limited GPUs,
the affinity matrices in TFGM are 16× downsampled, which
makes the HR SMs absorb the SR representation, whereas
some local details may be neglected.

In the future study, we plan to address the above-mentioned
problems in the following directions: 1) further ameliorate
the calculation strategy of the affinity matrices of TFGM
instead of direct 16× spatial downsampling to capture more
localized HR representations in optical RSIs. 2) Propose a
lightweight network based on the long-distance context to
obtain larger receptive fields, and thus, handle the challenge
of incomplete or overcomplete detection. 3) Design a practical
spatial attention module to cope with the complicated issue of
identifying tiny objects, such as vehicles and vessels, in optical
RSIs. 4) Propose an algorithm that adaptively adjusts the
resolution of input RSIs according to the capacities of different
models to boost the inference efficiency of various methods.

V. CONCLUSION

In this article, we present the first LR input-based frame-
work with MTL strategy to generate accurate HR SMs for RSI-
SOD, which can improve performance and inference speed in
LR conditions. We first design a dual-branch network based on
a residual encoder and two individual heterogeneous decoders,
i.e., TSDD and ASRD, for SOD tasks and SR tasks, to achieve
this goal. The former adopts a layer-by-layer upsampling
learning and deep supervision strategy to gradually reconstruct
the resolution of the predicted SMs, while the latter combines
the shallowest and deepest features of the encoder to estimate
the HR optical RSIs. To explicitly guide the learning process
of RSI-SOD, we propose a novel TFGM to distill the domain
knowledge with HR structural representation from the SR
branch to the SOD branch. Extensive experiments reveal that
SRAL outperforms more than 20 state-of-the-art algorithms
under various input spatial resolutions and yields considerable
efficiency. Both ASRD and TFGM can be omitted in the
inference phase without any computational cost, and yield
favorable conditions for deployment in resource-constrained
and real-world applications. Besides, we extend the proposed
SRAL to five typical methods to show its model-agnostic
capability, and adequate failure analysis indicates our future
research directions.
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