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Abstract—Recently, anchor-based detectors can achieve decent
performance in multimodal remote sensing scenarios, whereas
their anchor-free counterparts fail to reach comparable results.
To remedy this problem, we first comprehensively investigate
the misalignment issues in multimodal features and detection
heads, and present a dual-perspective alignment learning (DPAL)
framework for multimodal remote sensing object detection. Par-
ticularly, we design a cross-modal alignment module (CMAM),
which utilizes the multiscale dilation strategy and differentiable
alignment function with channel-wise modulation for cross-modal
feature integration. Additionally, to cope with the misalignment
problem in regression and classification heads, we propose a task-
head alignment module (THAM). It presents a novel pseudo-
anchor mechanism, introduces a semi-fixed offset generation
strategy to capture task-variant sampling coordinates, and ul-
timately deploys an offset knowledge transfer mechanism with
deformable alignment for anchor-free detection heads. Extensive
experiments on four multimodal object detection datasets show
impressive results of the proposed DPAL framework. The project
code is released at https://github.com/lyf0801/DPAL.

Index Terms—Object detection, remote sensing, RGB-Infrared
imagery, anchor-free, alignment learning.

I. INTRODUCTION

OBJECT detection aims to recognize the category and
location information of potential objects, which serves as

a fundamental visual task for remote sensing image processing,
providing wide applications for land cover classification [1],
scene understanding [2], and image caption [3]. With the
development of deep learning [4], object detection has made
remarkable achievements in optical aerial imagery [5], [6].
However, in harsh environments, such as low-light conditions,
there is still a huge challenge, as the full picture of objects
cannot be captured by optical remote sensing sensors solely.

Subsequently, some researchers propose a vision task known
as multispectral/multimodal object detection [7], which aims
to identify and localize objects from optical and infrared image
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Fig. 1. Typical misalignment issues that exist in multimodal object detection
as follows: (a) multi-modality image misalignment; (b) multi-modality feature
misalignment; (c) classification and regression head feature misalignment.

pairs. Early research efforts focus on pedestrian and vehicle
detection by incorporating visible and thermal images in traffic
scenarios. Moreover, some researchers present object detection
in optical and infrared remote sensing images [8]. Recently,
benefiting from the fast inference and straightforward design
of continuously updated YOLO detectors, numerous anchor-
based YOLO algorithms have been proposed for multimodal
remote sensing images [9], [10], [11]. For example, Zhang et
al. [12] present a super-resolution auxiliary decoder to facil-
itate object detection. To our best knowledge, anchor-based
approaches have been extensively investigated in multimodal
remote sensing images [11], [12], [13], which show excellent
results on public datasets. However, a notable drawback of
anchor-based detectors is the necessity of manual predefinition
of massive multiscale anchors, which is time-consuming and
might not be optimally adaptable to complicated scenarios. In
contrast, anchor-free detectors eliminate predefined anchors,
they enable end-to-end one-stage regression, which simplifies
the detection process and potentially reduces computational
overhead. Particularly, Huang et al. [14] observe a universal
performance degradation of anchor-free methods relative to
their anchor-based counterparts. The inherent limitations of
anchor-free detectors [15], typically the absence of predefined
anchors and two-stage regression, become more pronounced
in multimodal remote sensing applications. For instance, Su et
al. [16] highlight that FCOS exhibits a significant performance
gap compared to anchor-based methods in both single- and
dual-modal scenarios on VEDAI and DroneVehicle datasets.

To bridge the above deficiency, we pay attention to investi-
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gating a novel anchor-free detection framework for multimodal
remote sensing imagery. Generally, existing anchor-free detec-
tors cannot reach comparable results to anchor-based methods
[17]. However, the reasons behind the aforementioned problem
and potential solutions are not yet clear. In this article, we first
argue that the significant concerns are several misalignment
issues in multimodal anchor-free detectors shown in Fig. 1.

Specifically, we find three misalignment problems as fol-
lows. First, some object instances in infrared and optical im-
ages are not aligned due to diverse differences in multispectral
imaging sensors. Although it is possible to manually align in-
frared and optical images, serious misalignment problems still
remain. As illustrated in Fig. 1(a), the locations of two trucks
are shifted between optical and infrared images, and their off-
sets are distinct from each other. Conversely, the trucks marked
with green boxes in Fig. 1(b) are almost strictly aligned.
These non-regular multispectral imaging discrepancies pose a
severe challenge for multimodal feature fusion in deep neural
networks [18]. Second, as revealed in Fig. 1(b), although the
identical objects are seemingly aligned in multimodal images,
suffering from inconsistent downsampling and imprecise fu-
sion of convolutional networks, the activation positions of the
same object in cross-modal features appear to be misaligned.
This is also an essential factor that we believe constrains the
performance of anchor-free detectors. Third, we observe a
significant difference between IoU scores from the regression
head and category predictions from the classification head in
Fig. 1(c). We attribute two main reasons as follows: firstly,
the restricted point features of 3×3 convolutions cannot depict
complete and accurate object regions, and secondly, the lack
of RoI alignment and two-stage regression further increases
the misalignment of regression and classification features. The
aforementioned misalignment problems inevitably exacerbate
the challenge of anchor-free multimodal object detection.

To address the above-mentioned problems, we propose a
Dual-Perspective Alignment Learning (DPAL) approach for
multimodal remote sensing object detection. The uncertain
misalignment of optical and infrared images is an inherent
attribute of the model inputs [18], and thus we cannot elegantly
cope with this problem in an end-to-end detection framework.
Hence, we propose to incorporate the adaptive and generalized
spatial alignment learning strategy in the multimodal feature
fusion phase to unify the multispectral image misalignment
and multimodal feature misalignment issues at the deep feature
level. Besides, we also present a pseudo-anchor generation and
a deformable alignment mechanism into anchor-free detection
heads to alleviate the misalignment issues between the regres-
sion head and the classification head, ultimately unleashing the
potential of multimodal anchor-free detectors [19]. Different
from the existing multispectral detection approaches [20], the
proposed two unsupervised alignment-based learning modules
are equipped with an anchor-free baseline model for adaptive
multimodal feature integration, head feature coordinate resam-
pling, and offset knowledge transfer. As shown in Fig. 2(c),
the presented methodology is distinguished from the existing
single-modal and multimodal anchor-free detection paradigms
[15], and our main contribution and novelty is to propose two
plug-and-play modules to handle the misalignment problems

(a) single-modal anchor-free detector (b) multimodal anchor-free detector
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Fig. 2. Comparison of the proposed dual-perspective alignment framework
with existing single-modality and multimodal anchor-free object detectors.

in anchor-free object detectors, i.e., cross-modal alignment
module (CMAM) and task-head alignment module (THAM).
With the aforementioned efforts, we aim for the presented
approach to reach comparable performance with anchor-based
methods, e.g., RetinaNet [21], paving a way to compensate
for the shortcomings of anchor-free detectors and bringing a
new perspective and insight to the remote sensing community.
To reveal the effectiveness of the proposed DPAL, we con-
duct experiments on four widely-used multispectral datasets,
including two datasets for remote sensing and two ones for
traffic scenarios. Extensive quantitative, qualitative, and visual
studies show the advantages of DPAL, as well as some merits
of both alignment learning modules via ablation study.

The main contributions of this article are listed as follows:
1) We summarize several misalignment issues in multi-

modal object detection, and argue they are critical factors
in limiting the performance of anchor-free detectors.

2) To tackle the uncertain misalignment issue between mul-
timodal features, we propose a cross-modal alignment
module (CMAM) with adaptive offset learning, differ-
ential alignment, and channel modulation mechanisms.

3) To handle the misalignment problem between regression
and classification sub-task heads, we present a task-head
alignment module (THAM) with pseudo-anchor strategy,
semi-fixed offset learning, and offset knowledge transfer.

4) Based on the above research efforts, we design DPAL
framework, providing new research insights for multi-
spectral or multimodal remote sensing object detection.

The remaining article is organized as follows. Section II pro-
vides the related studies. Section III presents the methodology
of the proposed DPAL framework. We conduct experiments
in Section IV and draw a conclusion in Section V.

II. RELATED WORK

Here, we summarize related studies on remote sensing mul-
timodal detection and alignment learning for object detection.

A. Remote Sensing Multimodal Object Detection
Since Razakarivony et al. [8] release the VEDAI dataset

incorporating multimodal image pairs of optical and infrared
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modalities, remote sensing multimodal object detection has
continued to attract the research interest in recent years [10],
[11], [12]. As an early deep learning-based research work,
Sharma et al. [11] propose a mid-level multimodal fusion
detector based on YOLO, and Fang et al. [10] introduce modal-
invariant and modal-specific attention mechanisms for parallel
multimodal feature fusion for joint detection.

Overall, existing related studies almost focus on employing
single-modal detectors, e.g., YOLO, as a baseline to design
modal-adaptive, spatial-wise, channel-wise, global-wise, local-
wise, or self-attention mechanisms to refine multimodal fea-
tures [9], [13], [16]. For example, Zhang et al. [13] present a
feature enhancement module with multiscale convolutions and
feature fusion blocks via learnable spatial weights. Su et al.
[16] propose a low-rank enhancement approach and a dynamic
illumination-aware mask module to unbiasedly and compatibly
extract multimodal features from the frequency domain.

Besides, several works investigate DETR-like models for
multimodal remote sensing object detection. For instance, Zhu
et al. [22] introduce a multispectral DETR framework via de-
formable attention mechanism. Guo et al. [23] present modal-
ity competitive query selection mechanism and multispectral
deformable cross-attention module with DETR framework.

Furthermore, some researchers pay attention to detecting
small or tiny objects from multimodal remote sensing imagery,
such as persons and vehicles. For example, a RGB-Thermal
tiny person detection model [24] is proposed based on the
quality-aware learning strategy and cross-modal enhancement
module. Xu et al. [25] leverage spatial and channel attention
mechanisms to combine RGB and infrared features for air-
borne small object detection. Based on physical simulation
images, Cao et al. [26] introduce a template matching approach
with a dynamic template library for small object detection.

Recently, there are some interesting ideas about state space
model [27] and cross-modal distillation [28] for multimodal
remote sensing object detection, which have contributed sig-
nificantly to this field with novel research insights.

B. Alignment Learning for Object Detection

Some existing studies focus on alignment learning for object
detection tasks, and most of them are proposed for unimodal
object detection. We divide these efforts into object proposal
perspective, feature pyramid perspective, and detection head
level. For object proposal alignment, Han et al. [29] introduce
the align convolution for sampling points of oriented object
proposals in remote sensing imagery. Furthermore, Xie et al.
[30] extend align convolution to adaptive aligned convolution
by constraining deformable convolution and align convolution.
With respect to feature pyramid perspective, Xu et al. [31] pro-
pose pyramidal representative feature alignment for adaptive
object detection. Huang et al. [32] introduce deformable con-
volution to integrate adjacent-stage spatial features in feature
pyramid networks. Song et al. [33] present an accurate feature
alignment approach via graph matching for image and point
cloud pairs. Wang et al. [34] also design an adjacent alignment
module to dynamically integrate multiscale spatial features for
salient object detection. Regarding detection head level, Feng

et al. [35] propose task-aligned head for one-stage detectors.
Xie et al. [36] present a deformable alignment approach to
explore the correlation between regression and classification
heads. Zhao and Wang [37] present several task-specific loss
functions to align the disagreement problem of both subtasks.

Furthermore, researchers extend alignment to domain adap-
tive, few-shot, and 3D object detection. For instance, He et al.
[38] propose a partial alignment-based asymmetric detector for
domain adaptive object detection. Wang et al. [39] combine
intermediate domain image generation and domain-adversarial
training via an augmented feature alignment framework. Chu
et al. [40] align source-similar and source-dissimilar samples
in the unified feature space by adversarial learning for source-
free object detection. Han et al. [41] present an attention-based
feature alignment mechanism for few-shot object detection.

In addition, some research works concentrate on misaligned
multispectral object detection [42], [43], [44]. Among them,
Fu et al. [42] propose to adapt a single-stage detector trained
on aligned multimodal imagery to non-aligned visible-infrared
image pairs. Chen et al. [43] present the attentive positional
alignment to match pedestrian regions between complemen-
tary modalities. Furthermore, a deformable convolution-based
alignment approach for multimodal feature fusion is proposed
in [44]. However, none of the existing works have adequately
considered the multi-level misalignment challenges in multi-
spectral aerial imagery. To bridge this gap, we first investigate
a dual-perspective alignment framework in this article.

III. METHODOLOGY

Here, we describe the methodology of the proposed DPAL
framework. We firstly present the overview of DPAL, then
introduce two alignment learning modules, i.e., CMAM and
THAM, and finally the anchor-free loss function is discussed.

A. Overview of the Proposed DPAL Framework

As illustrated in Fig. 3, the proposed DPAL framework
consists of three parts, i.e., a modal-specific encoder, five
CMAMs, and a THAM. For an optical (RGB) and infrared
(IR) image pair Irgb and Iir, DPAL first feeds them into the
modal-specific encoder, which is composed of dual indepen-
dent parallel branches for individual modality images. Specif-
ically, each branch includes a ResNet50/PVTv2 backbone and
a feature pyramid network (FPN) with lateral connection [45],
and yields five multiscale modal-specific features for both Irgb
and Iir, which denote as F 1

rgb ∼ F 5
rgb and F 1

ir ∼ F 5
ir.

As shown in Fig. 3(b), for a multimodal feature pair F i
rgb

and F i
ir at the same level, CMAM utilizes them as input

information, and employs a multiscale dilated learning method
to generate several spatial offset groups for both RGB and IR
features. Then, we deploy a parameter-free differential align-
ment strategy to perform multi-group alignment for individual
modality features, and obtain the aligned RGB and IR features.
Finally, we introduce a channel-wise modulation and fusion
solution to integrate aligned RGB and IR features. Thus, a
combined cross-modal alignment representation is produced,
which indeed reduces background noise and produces more
accurate and fine-grained spatial activation for remote sensing
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Fig. 3. Illustration of the proposed DPAL framework. (a) Modal-specific encoder. (b) Cross-modal alignment module. (c) Task-head alignment module.

objects. Considering that FPN adopts a five-level architecture,
DPAL also contains five independent CMAMs to acquire five
cross-modal aligned features in a multiscale pyramidal manner.

With respect to THAM, we illustrate its methodology in
Fig. 3(c). It first feeds the cross-modal aligned feature as input,
and utilizes two parallel groups of three 3 × 3 convolutions
for initial feature generation of regression and classification
heads. Then, a pseudo-anchor mechanism and a semi-fixed
offset learning strategy are presented to project the regression
offsets, thereby the aligned regression features for anchor-free
regression prediction could be calculated via the deformable
alignment method. Motivated by the fact that classification and
regression differ in their preferences for spatial features [46],
we argue the regression offsets are not an optimal shape for the
classification task. Therefore, we perform classification sample
generation from initial classification features, and then design
an offset knowledge transfer function to refine classification
offsets via residual learning. In the same way, the deformable
alignment approach is also utilized to calculate aligned classifi-
cation features for anchor-free object classification prediction.

B. Cross-Modal Alignment Module (CMAM)

Existing remote sensing multimodal object detection algo-
rithms widely propose elaborate multimodal feature fusion
blocks, but ignore the feature misalignment problem, which is
an intrinsic issue in deep convolutional networks [34], and the
principal factors include discrete downsampling and imprecise
fusion. As shown in Fig. 1(a)-(b), there simultaneously exists
indeterminate misalignment at the image and feature levels for
multispectral image pairs. Obviously, this co-existing uncer-
tain misalignment problem exacerbates the confusion between
RGB and IR features, further induces multimodal feature
misalignment, and seriously hinders the fusion generalization.
To address this issue, we design a novel CMAM module that
makes efforts to align the cross-modal features and generate
accurate multimodal integrated features adaptively.

As illustrated in Fig. 3(b), the core process of CMAM con-
sists of three steps, i.e., 1) multiscale dilated offset learning, 2)
group-wise alignment mapping, and 3) cross-modal channel-
wise modulation and fusion. Overall, the purpose of CMAM
is to adaptively leverage two coarse and unaligned RGB and
IR features, Frgb and Fir, then employ the above techniques
and ultimately obtain the aligned cross-modal representation.

1) Multiscale Dilated Offset Learning: First of all, consid-
ering the limited receptive field of standard convolution, we
propose to utilize multiscale dilated convolutions to project
more generalized spatial offsets for both RGB and IR features.
Specifically, our presented multiscale dilated convolutions in-
clude 1×1 point-wise convolution, standard 3×3 convolution,
and 3×3 convolution with dilation rate of 2. With respect to
two coarse RGB and IR features Frgb and Fir, the multiscale
dilated offset approach first concatenates them as a unified
tensor and deploys various convolution operators in a parallel
manner, to generate RGB and IR offsets as follows:

∆rgb,∆ir = C3×3(C1×1(C3×3([Frgb, Fir]), C23×3([Frgb, Fir]))), (1)

where Ci×i denotes the function of standard i× i convolution,
C23×3 represents 3×3 convolution with dilation rate of 2, and
[·, ·] is channel-wise concatenation. In particular, we present
multi-group alignment mapping in CMAM, so that ∆rgb and
∆ir both contain several offset groups with a wider view.

2) Group-Wise Alignment Mapping: Motivated by group
convolution, we first divide the initial Frgb and Fir into
n groups, i.e., F 1

rgb, ..., F
n
rgb and F 1

ir, ..., F
n
ir, to bring more

adaptive diversity, then split multi-group offsets ∆rgb and ∆ir

into ∆1
rgb, ...,∆

n
rgb and ∆1

ir, ...,∆
n
ir as prior knowledge, and

finally leverage a non-parametric alignment function to project
aligned RGB and IR features in Fig. 3(b). Mathematically,

F ′
rgb = C3×3(

[
FA(F

1
rgb,∆

1
rgb), ...,FA(F

n
rgb,∆

n
rgb)

]
),

F ′
ir = C3×3(

[
FA(F

1
ir,∆

1
ir), ...,FA(F

n
ir,∆

n
ir)

]
).

(2)
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(a) (b) (c) (d) (e)

Fig. 4. Illustration of various sampling point methods with 3×3 kernels. (a) standard convolution with fixed sampling points. (b) deformable convolution [47].
(c) AlignConv [29]. (d) the proposed anchor-free regression head alignment mechanism. (e) the proposed anchor-free classification alignment mechanism. Note
that the red box represents proposal anchor in anchor-based detectors, and red dashed boxes denotes our presented pseudo anchors in anchor-free detectors.

Here, F ′
rgb and F ′

ir denote the aligned RGB and IR features,
and FA(·, ·) indicates the alignment function as follows:

FA(F,∆) =

W∑
w′

H∑
h′

Fw′,h′ ·max(0, 1− |w +∆x
w,h − w′|)

·max(0, 1− |h+∆y
w,h − h′|),

(3)

where w′ and h′ are the horizontal and vertical index of a
subgroup feature F , and ∆ = {∆x,∆y} denote the learnable
transformation offset elements for pixels in F . Typically, this
alignment approach employs a bi-linear interpolation kernel on
the spatial location (h+∆x

w,h, w+∆y
w,h) to resample and align

F , hence refining cross-modal features. More implementation
details for how to find partial derivatives are discussed in [48].

3) Channel-Wise Modulation and Fusion: As presented in
Fig. 3(b), before constructing the final cross-modal alignment
representations, a simple yet effective channel-wise attention
mechanism is introduced to suppress noise and remove back-
ground false activation of the aligned RGB and IR features.
First, we employ the global average pooling (GAP) opera-
tions to capture the overall abstract semantic knowledge and
generate two global features, i.e., vrgb = GAP(F ′

rgb) and
vir = GAP(F ′

ir). Then, two fully connected layers with
activation functions are utilized to perform channel-wise non-
linear mapping and global adaptive knowledge reconstruction.
Formally, the above-mentioned process is defined as follows:[

v′rgb, v
′
ir

]
= Tanh(W2 · σ(W1 · [vrgb, vir] + b1) + b2), (4)

where Tanh(·) and σ(·) represent Tanh and Sigmoid activation
functions, respectively. W1 and W2 denote the weight matrices
of fully connected layers, b1 and b2 indicate the bias matrices.

Eventually, we deploy a self-contained integration method to
compute the distinctive cross-modal alignment representation
by simultaneously leveraging the aligned multimodal features
F ′
rgb, F ′

ir and refined global semantic vectors v′rgb, v′ir, i.e.,

Falign = C3×3((1 + v′rgb) · F ′
rgb ⊕ (1 + v′ir) · F ′

ir), (5)

where ⊕ denotes element-wise summation function. As shown
in Fig. 3(b), the ultimate cross-modal alignment feature pro-
vides the finer-grained spatial response, which maximizes
activation of regions of interest in multimodal image pairs.

In summary, CMAM adopts a multi-group offset learning
strategy, a parameter-free differentiable alignment function,
and a channel-wise modulation approach, which fully utilizes

various learnable operators to eliminate the misalignment
issue of multimodal images in feature perspective as much as
possible and ultimately generates adaptive cross-modal aligned
representations, thus offering to anchor-free detection heads.

C. Task-Head Alignment Module (THAM)

Since there are no pre-defined anchors to ensure as much
recall as possible, existing anchor-free object detectors [15]
always underperform their anchor-based counterparts. In ad-
dition, due to the overhead view and wide imaging scopes
of aerial sensors, extensive ground objects possess multiscale
characteristics. As illustrated in Fig. 4(a), the fixed point-
based convolutional features cannot capture sufficient receptive
fields, especially for large-scale and irregular remote sensing
objects. Furthermore, classification and regression do not share
the similar preferences of spatial features, e.g., classification
prefers the topology, edge, and texture of objects, while re-
gression additionally relies more on the contextual information
around objects [46]. Recently, several research works propose
to utilize deformable convolution [47] or aligned convolution
[29] (as shown in Fig. 4(b) and 4(c)) to roughly enlarge
the receptive fields [36]. However, they neglect the intrinsic
correlation between regression and classification, and struggle
to generalize to anchor-free detectors. Based on the above
deficiency, we present THAM to tackle these issues.

As illustrated in Fig. 3(c), THAM mainly consists of three
novel technical procedures as follows: 1) pseudo-anchor mech-
anism, 2) semi-fixed offset learning, and 3) offset knowledge
transfer. Here, we describe the detailed phases as follows.
First of all, we employ dual separate branches of three 3×3
convolutions to obtain the initial features of classification and
regression heads from the output of CMAM (i.e., Falign),
and term them as Freg and Fcls. Motivated by the pre-
defined anchors of anchor-based detectors, THAM introduces
a learnable pseudo anchor (x, y, w, h) for each spatial point in
the aligned cross-modal feature Falign to provide the region
scope information for a potential object. As for the pseudo
anchor, four corner coordinates of a region, i.e., xmin, xmax,
ymin, ymax, are calculated as follows:

xmin = x− w/2, xmax = x+ w/2,

ymin = y − h/2, ymax = y + h/2.
(6)

To capture contextual information around the object, we
consider these four corner coordinates of pseudo-anchor as
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four fixed resampling points. Thus, these four corner off-
sets ∆corner1, ...,∆corner4 can be denoted as (xmin, ymin),
(xmin, ymax), (xmax, ymin), and (xmax, ymax), respectively.
We regard the above four corner points as spatial constraint
conditions, and project five adaptive offsets within the range
of pseudo anchors from Freg by two convolutional layers,
i.e.,

{
∆1

reg, ...,∆
5
reg

}
, where the offset generation function

Foffset(·) is defined as follows:

Foffset(x) = σ(C3×3(ReLU(C3×3(x)))). (7)

Essentially, four fixed corner offsets can serve as contextual
knowledge for an object, while the other five adaptive sam-
pling points could characterize the local information. Based
on this insight, we combine four fixed corner offsets and five
conditional offsets as the kernel resampling knowledge of a
3×3 convolution for regression subtask, defined as ∆reg, and
named this process as semi-fixed offset learning as illustrated
in Fig. 4(d). In contrast to fully adaptive offset generation of
deformable convolution version 2 (DCNv2) [49] and internal
well-distributed sampling within anchors of AlignConv [29]
in Fig. 4, the presented semi-fixed offset learning proposes a
pseudo-anchor mechanism and incorporates the advantages of
the fully adaptive learning within feature maps in Fig. 4(b)
and the uniform sampling within anchors in Fig. 4(c), which
greatly compensates for the misalignment of regression head.

On account of distinct spatial feature preferences between
classification and regression sub-tasks, we argue that regres-
sion offsets can not provide an effective representation for
classification. Based on this deficiency, we present two addi-
tional efforts on top of the fundamental classification sample
generation from initial classification features. First, we assume
the central coordinate of the pseudo anchor (x, y) as the
geometric center of potential objects, and consider it as a fixed
offset (defined as ∆center) that benefits object classification.
Therefore, we only need to generate eight resampling offsets
for the classification offset learning via Eq. 7, termed as{
∆1

cls, ...,∆
8
cls

}
. Second, to model the intrinsic correlation

between regression and classification, and considering the
prior knowledge of regression offset, an offset residual transfer
strategy from regression offset ∆reg to classification offset
∆cls is designed to refine classification offset. The above steps
for classification offset generation could be defined as

∆cls = ∆reg ⊕
{
∆center,∆

1
cls,∆

2
cls, ...,∆

8
cls

}
. (8)

Fig. 4(e) illustrates the proposed classification offset method.
Based on two offset representations ∆reg and ∆cls and two

task-specific features Freg and Fcls, we can utilize the de-
formable alignment approach [49] to calculate aligned features
for anchor-free regression and classification prediction, i.e.,

F ′
reg = FD(Freg,∆reg)⊕ Freg, F ′

cls = FD(Fcls,∆cls)⊕ Fcls, (9)

where FD(·, ·) indicates the function of deformable alignment
learning for a spatial point xp in a feature map as follows:

FD(xp,∆p) =

K∑
k=1

wk · x(p+ pk +∆pk
) ·∆mk, (10)

where pk denotes 9 sampling points {(0, 0), (−1, 0), ..., (1, 1)}
of a standard 3× 3 convolution, k is the sampling index, ∆pk

Algorithm 1 : Task-Head Alignment Learning Mechanism
Input: regression feature Freg , classification feature Fcls

Output: regression output F ′
reg , classification output F ′

cls

THAM (Freg, Fcls):
Generate pseudo anchor (x, y, w, h) ← Freg

Calculate corner coordinates {xmin, ymin, xmax, ymax}
Project four corner offsets ∆corner1, ...,∆corner4

Obtain regression offsets ∆1, ...,∆5 ← Freg via Eq. (7)
for i = 1, ..., 5 do
∆i,x ← min(max(∆i,x, xmin), xmax)
∆i,y ← min(max(∆i,y, xmin), xmax)

end for
∆reg ← {∆corner1, ...,∆corner4, ∆1, ...,∆5}
Define object center sample offset ∆center ← (x, y)
Obtain regression offsets ∆1, ...,∆8 ← Fcls via Eq. (7)
for i = 1, ..., 8 do
∆i,x ← min(max(∆i,x, xmin), xmax)
∆i,y ← min(max(∆i,y, xmin), xmax)

end for
∆cls ← ∆reg , ∆center, and ∆1, ...,∆8 via Eq. (8)
F ′
reg ← Freg and ∆reg via Eqs. (9) and (10)

F ′
cls ← Fcls and ∆cls via Eqs. (9) and (10)

Return F ′
reg , F ′

cls

is our proposed spatial offset index, w represents convolution
weights, and m is the modulator scalar in DCNv2 [49]. The
operation procedure of THAM is summarized in Algorithm 1.

In conclusion, the presented THAM enables anchor-free de-
tectors to better adaptively resample object regions by develop-
ing feasible alignment learning mechanisms for classification
and regression subtasks, and thus facilitates the collaborative
object detection in multimodal remote sensing images.

D. Loss Functions for Anchor-Free DPAL Detector

The presented DPAL framework adopts the anchor-free
paradigm of FCOS [19] with a total loss function containing
a classification loss, a regression loss, and a centerness loss,
respectively. Because of no predefined anchors, the regression
objective is different from anchor-based detectors. Formally,
suppose a bounding box is B = {x1, y1, x2, y2, c

∗}, where
(x1, y1) and (x2, y2) are the coordinates of the upper-left and
lower-right corners, and c∗ denotes the category label. If a
spatial point (x, y) lies within B in the feature map, then the
regression target (l, t, r, b) for point (x, y) is represented as

l = (x− x1)/s, t = (y − y1)/s,

r = (x2 − x)/s, b = (y2 − y)/s,
(11)

where s is the stride factor for the corresponding feature stage.
FCOS defines a center score based on the above regression

target (l, t, r, b) for each predicted bounding box, i.e.,

sc =

√
min (l, r)
max (l, r)

× min (t, b)
max (t, b)

∈ [0, 1] , (12)

Obviously, if the center of the predicted bounding box is
close to the center of ground truth, the center score will be
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TABLE I
TYPICAL DETAILED INFORMATION OF FOUR PUBLIC MULTISPECTRAL OBJECT DETECTION DATASETS FOR OUR EXPERIMENTS

Datasets Image Type Image Size Train Set Test Set Classes Category Names Instances

VEDAI [8] Aerial+Infrared 1024×1024 1,089 121 8
car, pickup, camping car, truck,

other, tractor, boat, van
3,644

DroneVehicle [50] Drone+Infrared 712×840 17,990 8,980 5 car, truck, bus, van, freight car 953,087
FLIR [51] RGB+Thermal 512×640 4,129 1,013 3 bicycle, car, person 40,752
M3FD [52] RGB+Thermal 640×640 2,905 1,295 6 person, car, bus, motorcycle, lamp, truck 34,408

approaching 1. Conversely, the center score will be close to 0.
Thus, the total loss function of DPAL can be formulated as

Ltotal =
1

Npos

∑
(Lcls + λ2Lreg + λ3Lcenter) , (13)

where Npos denotes the total number of positive samples, and
Lcls indicates the focal loss function [21] as follows:

Lcls = −αt(1− ct)
γ log(ct), (14)

where αt and γ are hyperparameters for focal loss, and we set
αt and γ to 0.25 and 2, respectively. ct is defined as follows:

ct =

{
c if y = 1,

1− c otherwise,
(15)

where c ∈ [0, 1] indicates the predicted category classification
probability for the class with label y = 1.

Lcenter is defined as a binary cross-entropy loss for positive
samples. Thus, for a predicted centerness score sc ∈ [0, 1] and
a ground truth score s∗c ∈ [0, 1], Lcenter is denoted as

Lcenter(sc, s
∗
c) = −s∗c log(sc)− (1− s∗c)log(1− sc), (16)

In addition, Lreg = 1 − GIoU, which indicates the GIoU
loss [19] for bounding box regression optimization.

IV. EXPERIMENTS

A. Experimental Protocol

1) Datasets: We perform experiments on four public mul-
tispectral object detection datasets, including two remote sens-
ing optical and infrared object detection datasets (VEDAI [8]
and DroneVehicle [50]), and two traffic visible and thermal
object detection datasets (FLIR [51] and M3FD [52]). Their
major information is briefly summarized as follows:

VEDAI: is released by Razakarivony et al. [8] in 2016,
which consists of 1,246 pairs of RGB and IR aerial images
with more than 3,700 object instances. This dataset provides
two spatial versions, i.e., 512×512 and 1024×1024, where
1024×1024 version is adopted for our experiments. Following
Sharma et al. [11], eight object categories with 3,644 instances
are chosen for detection, i.e., car, pickup, camping car, truck,
other, tractor, boat, and van. Referring to [12], we split 1,089
pairs for training and 121 pairs for test with cross-validation.

DroneVehicle: is a large-scale RGB-Infrared vehicle detec-
tion dataset [50] captured by drones. It contains 28,439 image
pairs with 953,087 instances under various lighting conditions,
including five categories: car, truck, bus, van, and freight car.
It contains 17,990 pairs for training, 1,469 for validation,
and 8,980 for testing. The image size is uniformly 712×840.

Following [53], [54], [16], we transfer the bounding boxes for
horizontal object detection. In this work, we train the model
in the training dataset and make inferences in the test dataset.

FLIR: is a complicated RGB-Thermal object detection
dataset in traffic scenes proposed by [51]. It includes three
object categories: bicycle, car, and person, and consists of
5,142 image pairs with the size of 512×640. Referring to the
official split [51], we adopt 4,129 image pairs for the training
set, and the other 1,013 pairs for the test set. The number of
total object instances is 40,752 within the FLIR dataset.

M3FD: provides object detection annotations with six cate-
gories, i.e., person, car, bus, motorcycle, lamp, and truck [52].
It contains 4,200 image pairs with various image sizes, but
without the official dataset split. Since M3FD is segmented
from multiple video sequences, random splits will result in
similar samples and information leakage between training and
test sets. Thus, following [55], we obtain 2,905 training pairs
and 1,295 test pairs. Additionally, we unify the image size to
640×640 pixels for both training and inference phases.

The detailed dataset comparison of is shown in Table I.
2) Evaluation Metrics: As the basic and widely utilized

metrics for object detection, we choose AP and mAP50 for
performance indicators. The definitions of them are as follows:

mAP =
1

N

N∑
i=1

APi, AP =

∫ 1

0

P (R)dR, (17)

where AP is the average precision of each class, P is precision,
R is recall, and mAP is mean average precision of N classes.
mAP50 means the IoU threshold of truth positive is 0.5.

3) Implementation Details: We conduct experiments on 4
NVIDIA RTX 4090 GPUs with Ubuntu 20.04 system and
PyTorch2.1 toolbox. We deploy the anchor-free FCOS with
a ResNet50 backbone as baseline. The training batch sizes for
VEDAI, DroneVehicle, FLIR, and M3FD are set to 2, 6, 8,
and 6 for ResNet-based DPAL, and 2, 3, 8, and 6 for PVT-
based DPAL, respectively. We employ AdamW optimizer with
an initial learning rate of 1e-4 and a weight decay of 1e-4 for
training. The training process includes 500 warm-up iterations,
with total epochs set to 40 for DroneVehicle and FLIR, and
60 for VEDAI and M3FD. The learning rate will drop to 1e-
5 after 30 epochs for all datasets. The total training time of
PVT-based DPAL for DroneVehicle is nearly 10.6 hours on
4 NVIDIA 4090 GPUs, and for VEDAI, FLIR, and M3FD
datasets are approximately 5.4 hours, 6.1 hours, and 7.8 hours
on a single NVIDIA RTX 4090 GPU, respectively. The group
number of CMAM is set to 32, and the dilation rate of dilated
convolution is set to 2. Empirically, we follow FCOS and set
both λ2 and λ3 to 1 which works well in experiments.
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TABLE II
QUANTITATIVE COMPARISON OF OBJECT DETECTION WITH SEVERAL STATE-OF-THE-ART METHODS ON THE VEDAI DATASET [8]

Methods Publication Year Modality Car Pickup Camping Truck Other Tractor Boat Van mAP

YOLOrs [11] JSTARS 2021
I 82.03 73.92 63.80 54.21 43.99 54.39 21.97 43.38 54.71
R 85.25 72.93 70.31 50.65 42.67 76.77 18.65 38.92 57.00

R+I 84.15 78.27 68.81 52.60 46.75 67.88 21.47 57.91 59.73

RetinaNet† [21] TPAMI 2020
I 88.68 84.50 87.05 81.30 40.14 51.79 71.39 78.78 72.95
R 91.35 82.48 79.76 78.16 60.81 75.35 69.58 69.02 75.82

R+I 93.36 87.86 90.61 83.39 51.91 72.94 74.22 68.24 77.82

FCOS† [19] TPAMI 2022
I 82.19 75.52 89.01 92.73 56.13 59.25 73.70 74.15 75.34
R 88.96 82.42 87.56 86.35 58.65 68.44 78.05 71.48 77.74

R+I 85.86 79.22 86.08 90.93 57.27 75.36 70.53 80.20 78.20

YOLOFusion [10] PR 2022
I 86.70 75.90 66.60 77.10 43.00 62.30 70.70 84.30 70.80
R 91.10 82.30 75.10 78.30 33.30 81.20 71.80 62.20 71.90

R+I 91.70 85.90 78.90 78.10 54.70 71.90 71.70 75.20 75.90

SuperYOLO [12] TGRS 2023
I 87.90 81.39 76.90 61.56 39.39 60.56 46.08 71.00 65.60
R 90.30 82.66 76.69 68.55 53.86 79.48 58.08 70.30 72.49

R+I 91.13 85.66 79.30 70.18 57.33 80.41 60.24 76.50 75.09
GH-YOLO [56] TGRS 2023 R+I 89.15 83.57 76.19 59.55 53.05 78.70 59.58 70.71 71.31

FFCA [13] TGRS 2024 R+I 89.60 85.70 78.70 85.70 48.60 81.80 61.50 67.00 74.80
L-FFCA [13] TGRS 2024 R+I 91.30 85.50 72.80 79.70 47.30 79.00 56.10 73.90 73.30

C2Former [44] TGRS 2024 R+I 87.20 80.70 82.70 77.40 58.40 72.90 71.40 75.20 75.70
CrossYOLO [9] GRSL 2024 R+I 91.60 90.60 78.60 66.60 74.00 77.50 81.50 74.60 79.40
YOLOFIV [57] JSTARS 2024 R+I 93.89 87.42 82.10 80.13 60.84 82.15 75.47 79.28 80.16
DPAL-R (Ours) – 2024 R+I 85.39 80.41 87.09 85.58 74.94 76.24 80.31 77.35 80.91
DPAL-P (Ours) – 2024 R+I 88.10 83.88 86.79 95.53 67.98 71.07 87.06 87.05 83.43
FCOS is our baseline, † is our re-implementation, R means RGB modality, I indicates infrared modality.

B. Comparison with State-of-the-Art Methods

Here, we describe the comparison study on four datasets.
Particularly, we report Tables II-VI and illustrate Figs. 5-6.

1) Comparison on VEDAI and DroneVehicle: As reported
in Table II, we provide five single-modal algorithms (YOLOrs
[11], RetinaNet [21], FCOS [19], YOLOFusion [10], and Su-
perYOLO [12]) for RGB, IR, and RGB+IR object detection on
the VEDAI dataset, respectively. Besides, six state-of-the-art
methods for multimodal object detection are also introduced,
i.e., GH-YOLO [56], FFCA [13], L-FFCA [13], C2Former
[44], CrossYOLO [9], and YOLOFIV [57]. Firstly, we find that
the models trained on RGB images show higher performance
than that of IR modality. In addition, combining the multi-
modal images can yield consistent performance improvements,
revealing the complementary properties of optical and infrared
images. As for our presented framework, although DPAL-R
and DPAL-P cannot achieve the most excellent AP on all
categories among competitors, they reach the best mAP on
the whole dataset, i.e., 80.91% and 83.43%, illustrating its
cross-category trade-offs and backbone-agnostic capability.

Compared to state-of-the-art multimodal detectors, most of
which are developed based on anchor-based YOLOs. Espe-
cially for CrossYOLO [9], it yields better results than anchor-
free FCOS [19]. In contrast, our DPAL-P breaks through the
limitation of anchor-free paradigm and outperforms the above
YOLO-based methods, which demonstrates the validity of the
proposed dual-perspective alignment modules, highlighting its
robustness and potential for broader applications.

To further analyze the performance of the proposed DPAL
under different IoU thresholds and object scales, we report
Table III. It can be observed that our DPAL-R outperforms

TABLE III
COMPARISON OF AP UNDER VARIOUS IOU THRESHOLDS ON VEDAI [8]

Methods Year AP50 AP75 AP50:95 APS APM APL

RetinaNet† [21] 2020 77.82 47.37 46.80 39.02 51.24 37.82
FCOS† [19] 2022 78.20 51.69 46.94 43.67 50.29 54.92

SuperYOLO† [12] 2023 74.99 50.58 45.01 39.42 47.98 41.63
FFCA [13] 2024 74.80 – 44.80 44.60 – –

ICAFusion [20] 2024 76.62 – 44.93 – – –
C2Former [44] 2024 75.70 – 48.30 – – –
DPAL-R (Ours) 2024 80.91 54.38 49.52 43.65 51.98 55.51
DPAL-P (Ours) 2024 83.43 54.56 49.98 47.53 52.56 45.15

the baseline FCOS across nearly all metrics, demonstrating the
effectiveness of dual-perspective alignment mechanisms. Fur-
thermore, DPAL-P achieves comprehensive superiority over
RetinaNet and SuperYOLO in all indicators. The above ob-
servation indicates constructive contributions of DPAL.

With respect to the DroneVehicle dataset, we select four
single-modality methods, namely SSD512 [58], RFB [59],
RetinaNet [21], and FCOS [19] for comparison. Additionally,
we introduce six state-of-the-art multimodal object detection
approaches, including CGRP [18], FCOS [19], LAIIFusion
[60], ICAFusion [20], C2Former [44], and LFMDet [16],
and report their performance on the DroneVehicle dataset
in Table IV to validate the strengths and weaknesses of
these algorithms. Overall, the proposed DPAL-R and DPAL-P
achieve the best average performance among all competitors.
Especially, DPAL-P attains 74.82% in the truck category
and 94.16% AP in the bus category, which demonstrates its
superiority. Unlike the VEDAI dataset, the IR modality in
the DroneVehicle dataset provides richer and more valuable
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(a) (b) (c) (d) (e)(a) (b) (c) (d) (e)

Fig. 5. Zoom in for a better view. Visual detection comparison on the VEDAI test dataset. (a) RGB FCOS baseline. (b) IR FCOS baseline. (c) RGB+IR dual
FCOS. (d) DPAL. (e) Ground Truth. Note that the red dashed circles represent false detection, and green dashed circles indicate missing detection.

TABLE IV
QUANTITATIVE COMPARISON ON THE DRONEVEHICLE DATASET [50]

Methods Year Modal Car Truck Freight Bus Van mAP
SSD512 [58] 2016 R 82.33 56.01 39.84 85.97 44.47 61.72

RFB [59] 2018 R 77.84 53.60 40.75 82.33 41.71 59.24
RetinaNet† [21] 2020 R 81.58 50.36 40.63 86.18 40.33 59.82
FCOS-R† [19] 2022 R 86.22 54.35 40.34 87.82 36.96 61.14
FCOS-P† [19] 2022 R 87.01 59.73 45.45 88.71 42.70 64.72
SSD512 [58] 2016 I 89.92 65.32 56.97 89.11 54.40 71.14

RFB [59] 2018 I 88.65 62.60 62.11 89.22 54.45 71.41
RetinaNet† [21] 2020 I 94.34 59.33 56.56 91.38 51.28 70.58
FCOS-R† [19] 2022 I 91.89 61.16 47.20 89.73 38.70 65.73
FCOS-P† [19] 2022 I 95.09 68.71 56.13 92.76 47.83 72.10

CGRP [18] 2022 R+I 89.90 66.40 60.80 88.90 51.30 71.40
FCOS† [19] 2022 R+I 94.32 70.30 53.18 92.26 42.72 70.55

LAIIFusion [60] 2023 R+I 94.50 54.40 57.90 90.50 33.90 66.20
ICAFusion∗ [20] 2024 R+I 81.60 56.00 33.30 85.70 31.80 57.70
C2Former∗ [44] 2024 R+I 83.10 69.60 60.50 88.90 55.70 71.60

LFMDet [16] 2024 R+I 82.20 73.60 59.60 86.60 57.00 71.80
DPAL-R (Ours) 2024 R+I 95.34 72.12 56.07 93.86 45.37 72.55
DPAL-P (Ours) 2024 R+I 95.25 74.82 58.69 94.16 51.60 74.91
† denotes our re-implementation, ∗ indicates the re-implementation in
[16] , R denotes RGB modality, I indicates infrared modality.

information, enabling unimodal methods to achieve better
results from the infrared images. This is because most scenes
in the DroneVehicle dataset are captured under extremely
dark conditions, while the IR spectrum reflects more object
information than the RGB modality. As for IR baselines,

RetinaNet [21] outperforms FCOS-R [19], primarily due to
the advantages of anchor-based mechanisms. To address this
deficiency, we focus on misalignment issues of multimodal
images and introduce a dual-perspective alignment approach
at cross-modal feature representation and task-head feature
levels. Based on these contributions, the proposed DPAL-R
framework achieves 72.55% mAP50 on DroneVehicle, while
DPAL-P further improves this to 74.91%, significantly narrow-
ing the performance gap between anchor-based and anchor-
free methods for multimodal remote sensing object detection.

2) Comprehensive Analysis of Practical Value: As shown in
Fig. 5, the unimodal baseline exhibits frequent misidentifica-
tion of similar categories (e.g., classifying vans as cars), while
DPAL demonstrates excellent performance for small and tiny
objects. Fig. 6 presents visual comparisons on the complex
DroneVehicle dataset, where baseline methods struggle with
substantial inter-class similarity among vehicle types, resulting
in persistent false detections. The visualizations in Fig. 6(d)
show that DPAL achieves the most accurate prediction for
three vehicle categories (cars, trucks, and buses), overcoming
both aerial-view feature limitations and inter-class similarity
challenges without any omitted instances or false detections.
Notably, DPAL excels in three critical scenarios: 1) low-
light/nighttime conditions, 2) naturally occluded objects, and
3) misalignment-dominated environments, exhibiting nearly
zero false positives or missed detections. Practically, its
anchor-free design eliminates computational overhead from
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(a) (b) (c) (d) (e)(a) (b) (c) (d) (e)

Fig. 6. Zoom in for a better view. Visual detection comparison on the DroneVehicle test dataset. (a) RGB FCOS baseline. (b) IR FCOS baseline. (c) RGB+IR
dual FCOS. (d) DPAL. (e) Ground Truth. Note that the red dashed circles represent false detection, and green dashed circles indicate missing detection.

anchor-based methods, significantly improving real-time in-
ference efficiency while maintaining practical applicability.

3) Comparison on FLIR and M3FD: To further verify
the generalization of DPAL, we consider two RGB-Thermal
object detection datasets in traffic scenes, i.e., FLIR [51] and
M3FD [52], and present the quantitative analysis as follows.
As for the FLIR dataset, it contains three object categories:
bicycle, car, and person. Several state-of-the-art methods, e.g.,
CMPD [61] and EME [55], are included for a comparison
study of the FLIR dataset in Table V. In terms of mAP,
our DPAL-P reaches 75.95%, which exceeds all comparison
algorithms. Although DPAL-P fails to achieve the best per-
formance on all categories, the overall mAP demonstrates
its balanced trade-off among various scenarios and multiple
object categories. Similarly to DroneVehicle, the IR images
from FLIR have more abundant object information and provide
more discriminative features for various unimodal detectors. In
the case of the recent EME [55] framework, which achieves

the best performance on bicycles but struggles to recognize
persons. In contrast, DPAL-P shows predominance in cars and
persons, thus achieving a superior mAP. We attribute that these
comparison methods fail to take into account the inherent
misalignment issue between multimodal features, leading to
the performance discrepancy on FLIR. Obviously, benefiting
from our research efforts, the misalignment problem is possi-
bly mitigated, thereby a decent performance is delivered.

As for the M3FD dataset, we refer to Zhang et al. [55] and
compare the proposed DPAL with recent GFL [63], ShaPE
[55] and EME [55] methods in Table VI. In general, the
RGB images provide more beneficial knowledge than their IR
counterparts. By leveraging RGB and IR images, the unimodal
detectors (i.e., FCOS, RetinaNet, and GFL) offer better overall
performance than their original version. In terms of mAP,
DPAL-R exceeds the state-of-the-art EME by 1.77%, while
DPAL-P further improves performance by 2.27% over DPAL-
R, reaching the best accuracy in car, bus, lamp, and truck
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TABLE V
QUANTITATIVE DETECTION COMPARISON ON THE FLIR DATASET [51]

Methods Year Modal Bicycle Car Person mAP
RetinaNet† [21] 2020 R 55.70 77.80 44.93 59.47

FCOS† [19] 2022 R 48.88 75.59 57.33 60.60
RetinaNet† [21] 2020 I 66.37 84.27 62.17 70.93

FCOS† [19] 2022 I 50.33 78.47 71.81 66.87
CFR [51] 2020 R+I 57.77 84.91 74.49 72.39

RetinaNet† [21] 2020 R+I 67.60 85.17 61.93 71.57
FCOS† [19] 2022 R+I 56.89 83.47 76.37 72.24
CMPD [61] 2023 R+I 59.87 78.11 69.64 69.35

HalluciDet [62] 2024 R+I – – – 70.90
ICA-FCOS [20] 2024 R+I – – – 71.70

EME [55] 2024 R+I 69.23 85.10 62.27 72.23
DPAL-R (Ours) 2024 R+I 61.60 84.72 77.57 74.63
DPAL-P (Ours) 2024 R+I 63.14 85.72 78.99 75.95

TABLE VI
QUANTITATIVE DETECTION COMPARISON ON THE M3FD DATASET [52]

Methods M Person Car Bus Motor Lamp Truck mAP SPF

RetinaNet†
R 44.57 74.87 57.80 44.30 36.63 49.70 51.30 .106
I 59.17 71.17 54.17 35.90 10.43 50.83 46.97 .106

R+I 60.10 77.27 61.63 45.42 25.67 51.80 53.63 .170

FCOS-R†
R 48.25 78.24 54.38 41.66 43.18 49.36 52.51 .121
I 67.51 74.06 54.14 40.24 21.40 45.58 50.49 .121

R+I 69.83 81.70 57.44 42.72 43.02 52.08 57.80 .139

FCOS-P†
R 51.04 79.79 60.33 38.58 40.05 51.39 53.53 .092
I 67.42 74.25 49.84 34.73 20.39 47.59 49.04 .092

R+I 69.99 81.92 63.25 41.58 42.72 50.50 58.33 .097

GFL
R 48.67 77.43 60.27 43.50 39.07 49.63 53.10 .110
I 64.27 73.73 52.50 36.50 15.10 47.37 48.27 .110

R+I 65.37 79.83 61.20 37.00 34.80 48.73 54.47 .172

ShaPE R+I 60.20 77.10 58.83 39.77 24.57 51.33 51.97 .149
R+I 65.80 79.10 62.33 41.33 30.80 53.67 55.50 .151

EME R+I 61.47 76.40 59.20 43.10 25.97 53.17 53.23 .149
R+I 68.43 81.23 63.37 43.90 35.77 53.53 57.70 .151

DPAL-R R+I 72.12 82.53 59.91 45.42 43.43 53.41 59.47 .168
DPAL-P R+I 71.54 83.31 68.96 44.79 44.45 57.38 61.74 .126

categories. As a result, our DPAL framework shows excellent
generalizability over multiple datasets, revealing its superiority
for universal multimodal object detection.

4) Inference Efficiency Comparison: To analyze the infer-
ence efficiency of the proposed method, we introduce a speed
indicator on the M3FD dataset, i.e., second per frame (SPF), to
compare these algorithms in Table VI. In particular, our base-
line FCOS needs average 0.121s to process a single image for
RGB or IR modality. As we can see, for multispectral inputs,
the presented DPAL models could reach a superior inference
speed to RetinaNet [21] and GFL [63]. This is because Reti-
naNet and GFL, as anchor-based methods, inherently exhibit
slower inference speeds compared to the anchor-free FCOS.
Their RGB+Infrared multi-modal variants employ early fusion
[55], directly integrating high-dimensional backbone features.
In contrast, FCOS and our DPAL perform feature fusion after
FPN processing, where the channel dimension is efficiently
reduced, significantly decreasing the computational overhead.
As a result, RetinaNet and GFL demonstrate a substantial

inference speed gap between their single-modal and multi-
modal versions, whereas FCOS shows minimal differences.

C. Ablation Study

Here, we provide the ablation analysis on VEDAI [8] for
ResNet-based DPAL and on DroneVehicle [50] for PVT-based
DPAL, with the quantitative results reported in Table VII. We
first describe the single-modal anchor-free baseline and then
discuss the effects of CMAM and THAM for dual modality.

1) Baseline Setup: Compared to No. 1, 2, and No. 7, 8 in
Table VII, it is observed that the baseline performs distinctly
in different modalities of VEDAI and DroneVehicle datasets,
i.e., the RGB images of VEDAI outperforms the IR images
and vice versa for DroneVehicle. Furthermore, the dual-modal
FCOS-R baseline achieves 78.20% mAP on VEDAI, while the
FCOS-P baseline attains 73.03% mAP on DroneVehicle.

2) Effects of CMAM: We propose CMAM to address the
spatial feature misalignment between RGB and IR modalities,
which designs multiscale dilated offset learning, group-wise
alignment mapping, and channel-wise modulation and fusion
to generate cross-modal alignment representation knowledge.
To validate the effectiveness of the proposed CMAM module,
we equip five CMAMs into the baseline model as an ablation
variant. By comparing No. 3, 4 and No. 9, 10 in Table VII,
the adoption of CMAM delivers some performance boosts, i.e.,
1.63% mAP on VEDAI and 1.23% on DroneVehicle, which
indeed reveals the effectiveness of CMAM on both datasets.

3) Effects of THAM: Furthermore, we build an ablation
variant in No. 5 and No. 11 in Table VII to demonstrate the
effects of THAM. Overall, the introduction of THAM results
in a performance increase of 1.78% and 0.81% in terms of
mAP on VEDAI and DroneVehicle, respectively. We attribute
this performance gain to the novel techniques of THAM,
i.e., pseudo-anchor mechanism, semi-fixed offset generation,
and offset knowledge transfer. In other words, it is precisely
because THAM enables classification and regression subtasks
to exploit more conducive task-specific knowledge.

4) Overall Effects: If we simultaneously integrate CMAM
and THAM, the completely DPAL-R can reach 80.91% mAP
on VEDAI, while DPAL-P achieves 74.91% on DroneVehicle,
which indicates their combined and non-conflicted validity.

D. Visual Analysis for Dual-Perspective Alignment

To illustrate why the presented DPAL could bring consistent
performance boosts across four datasets, we provide some
direct evidences from an intuitive perspective. Here, we show
and discuss the visual significance of CMAM and THAM.

1) Visualization of CMAM: As revealed in Fig. 7, we
present several typical samples on the challenging DroneVe-
hicle dataset, and the interesting findings are summarized as
following three points. First, compared to the RGB modality,
our baseline detectors can extract more object spatial knowl-
edge in dark conditions from the IR modality; however, there
still exists a lot of background noise in IR features. Second, as
shown in Fig. 7(e), although the RGB+IR baseline features can
capture richer object information, the activations are scattered,
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TABLE VII
ABLATION STUDY ON THE DRONEVEHICLE DATASET

Ablation study of DPAL-R on the VEDAI [8] dataset

No. Modality CMAM THAM mAP

1 I – – 75.34
2 R – – 77.74

3 R+I – – 78.20
4 R+I ✓ – 79.83
5 R+I – ✓ 79.98

6 R+I ✓ ✓ 80.91

Ablation study of DPAL-P on the DroneVehicle [50] dataset

No. Modality CMAM THAM mAP

7 I – – 71.46
8 R – – 64.72

9 R+I – – 73.03
10 R+I ✓ – 74.26
11 R+I – ✓ 73.84

12 R+I ✓ ✓ 74.91

lacking precise object localization with high response. More-
over, for dense foreground objects, the dual-modal baseline
features exhibit erroneous activation responses and misaligned
foreground activations. In contrast, our proposed CMAM in
Fig. 7(f) eliminates the misaligned and erroneous activations
in the multimodal baseline features, generating more accurate
and higher-response clues for remote sensing objects. Third,
the horizontal and vertical offset maps actually perceive the
offset of foreground object locations and accurately depict this
offset information of objects. The above discoveries serve as
direct evidence of the effectiveness of the proposed CMAM.

2) Visualization of THAM: To further demonstrate the
validity of the proposed THAM, we visualize the predicted
regression IoU scores and classification scores from detection
heads with and without (w/o) THAM, as displayed in Fig.
8. By comparison, there are two significant observations as
follows. First, leveraging THAM enables the model to predict
both a larger number of correct classification scores and higher
IoU scores. Second, by contrast to the IoU and classification
scores of individual models, THAM greatly reduces the mis-
alignment problem of prediction between classification and
regression heads, ultimately boosting the detection results. The
above findings adequately justify the effectiveness of THAM.

V. CONCLUSION

To cope with the misalignment issues in multimodal remote
sensing images, we propose DPAL framework for anchor-free
detectors. First, we design a cross-modal alignment module to
address the misalignment problem in the multimodal feature
fusion phase. Besides, we present a task-head alignment mod-
ule to handle the misalignment issue between classification and
regression heads and address the limitation of point features in
fully convolutional detectors. Experiments on four multimodal
object detection datasets in both remote sensing and traffic
scenes reveal the effectiveness of DPAL. While DPAL ef-
fectively addresses the cross-modal misalignment problem, its
primary contribution lies in alignment optimization rather than

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 7. Typical feature and offset visualization on the DroneVehicle dataset.
(a) RGB images. (b) IR images. (c) baseline RGB features. (d) baseline IR
features. (e) dual-modal baseline RGB+IR features. (f) RGB+IR features of
CMAM. (g) horizontal offset maps. (h) vertical offset maps.

universally boosting detection accuracy. Performance boosts
are most pronounced in scenarios with significant modality
discrepancies (e.g., uneven illumination, low-light conditions,
and occluded scenarios). In the future, we will explore the
object proposal level alignment mechanism within anchor-
based detectors for multimodal remote sensing imagery.
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