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ABSTRACT
Geospatial object detection is an essential task in remote sens-
ing community. One-stage methods based on deep learning
have faster running speed but cannot reach higher detection
accuracy than two-stage methods. In this paper, to achieve
excellent speed/accuracy trade-off for geospatial object de-
tection, a single-shot balanced detector is presented. First, a
balanced feature pyramid network (BFPN) is designed, which
can balance semantic information and spatial information be-
tween high-level and shallow-level features adaptively. Sec-
ond, we propose a task-interactive head (TIH). It can reduce
the task misalignment between classification and regression.
Extensive experiments show that the improved detector ob-
tains significant detection accuracy with considerable speed
on two benchmark datasets.

Index Terms— Geospatial object detection, one-stage
detector, multi-scale balance learning, task-interactive head

1. INTRODUCTION

Geospatial object detection in remote sensing images
(RSIs) is a fundamental task for earth observation. It has
received more and more attention because of its wide appli-
cations, such as disaster monitoring [1], land cover classifi-
cation [2], building extraction [3], etc. Currently, geospatial
object detection is still a challenging problem mainly due
to the imbalanced multi-scale objects and time-consuming
computation costs.

In recent years, the development of deep learning has
greatly promoted the research of object detection, and many
excellent algorithms have been proposed [4–10]. These meth-
ods are divided into two categories: two-stage and one-stage.
The typical two-stage methods [4, 5, 7] achieve excellent de-
tection performance on various public natural scene datasets.
Unfortunately, they involve complex computation in two
stages and cannot achieve real-time detection for RSIs. Re-
cently, CBD-E [11] and CSFF [12] are designed for geospa-
tial object detection specifically, but they still suffer from
complex calculations (as shown in Table 1). One-stage ap-
proaches execute the bounding boxes regression directly
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and obtain more considerable running speeds than two-stage
methods. However, these algorithms cannot perform well
in RSIs (e.g., [6, 10, 13, 14] as shown in Table 1). We find
that there are two challenging problems in RSIs for one-stage
detectors: 1) the imbalance of multi-scale features is further
aggravated due to the complicated background of RSIs; 2)
the diversity of geospatial objects magnifies the feature im-
balance between classification and localization sub-tasks.

To handle with the problems mentioned above, a single-
shot balanced detector (S2BDet) is proposed in this paper.
First, we propose a balanced feature pyramid network to
enhance the feature representation ability for multi-scale ob-
jects. Compared with the original FPN (e.g., [5,7]), we design
a multi-scale balanced module (MSBM), which can capture
more effective spatial information on shallow-level features
and richer channel information on high-level features. This
strategy enables the fused features to select effective spa-
tial/channel information of various scales simultaneously.
Second, to alleviate the task misalignment between the clas-
sification and localization, a task-interactive head is designed.
It compensates for misalignment between two sub-tasks by
feature interaction without additional loss function to control
the learning process.

The main contributions are summarized as follows:
• We design a balanced feature pyramid network (BFPN),

which contains two MSBM blocks to capture more ef-
fective features at different scales in RSIs.
• We propose a task-interactive head (TIH). It achieves

task feature alignment for one-stage detectors through
feature interaction of two sub-networks.
• The proposed S2BDet achieves significant improve-

ment on two remote sensing datasets, which has the
most excellent performance in keeping speed/accuracy
trade-off compared with several state-of-the-arts.

2. RELATED WORK

2.1. Feature Pyramid Network for Object Detection

Feature Pyramid Network (FPN) [5] is a classical method
for multi-scale object detection by using upsampling and
element-wise summation to coalesce feature maps with dif-
ferent scales. RetinaNet [6] and YOLOv3 [14] also adopt this
strategy. Although FPN improves the performance of various
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出发点：1. RetinaNet在进行多尺度预测的时候并没有对C2特征层进行利用，然而这一层对于检测小目标非常重要；

2. fpn仅仅采用elem-wise summation的方式进行特征融合，并没有考虑到位置信息/语义信息之间的balance；

3.单阶段目标检测算法采用分离的检测头，使得检测与分离两个子任务之间存在着misalignment。（existing 
onestage detectors have limitations of task misalignment between classification and localization, due to the divergence

of two tasks which are often implemented using two separate head branches. 引自ICCV2021 TOOD）
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Fig. 1. Illustration of our proposed S2BDet. P6 and P7 have been omitted due to space constraints. Like RetinaNet, P6 is
obtained from C5 by 3×3 convolution of stride = 2, and P7 is obtained from P6 by 3×3 convolution of stride = 2.

detectors, its simple feature fusion method limits the im-
provement of multi-scale detection performance. PAFPN [7]
redesigns FPN and achieves better prediction results than
FPN [5]. Recently, Dai et al. [15] propose an attention fusion
strategy for FPN. Its effectiveness has been verified in multi-
ple tasks [16]. It provides a new idea to solve the multi-scale
problem of object detection by attention mechanisms.

2.2. Task Misalignment of One-Stage Detectors

Recent one-stage detectors [6, 17] predict two separate
outputs by two different sub-networks to classify and regress
bounding boxes. This approach can make the network inde-
pendently to learn the two sub-tasks, reducing the learning
difficulty via separate loss functions. However, Feng et al.
[18] mention that the spatial features learned by them are dif-
ferent because of the divergence of loss functions and learning
mechanisms for classification and localization. To overcome
this misalignment, a sample assignment scheme and a task-
aligned loss function are designed in [18]. Different from that,
we propose a task-interactive head to alleviate this inconsis-
tency without additional loss to control the learning process.

3. METHODOLOGY

The proposed S2BDet is summarized in Fig. 1. It ap-
plies two MSBM blocks to generate a multi-scale convolu-
tional feature pyramid (BFPN). Then, the TIH consists of two
sub-networks, one for classifying anchors and the other for
regressing from anchors to ground-truth bounding boxes.

3.1. Balanced Feature Pyramid Network

As for the original FPN, RetinaNet [6] uses feature pyra-
mid levels P3 to P7, where P3 to P5 are computed from C3

through C5 of backbone, i.e.,

Pi = conv3× 3(Bilinear2x(Pi+1)⊕ conv1× 1(Ci)), (1)

where ⊕ indicates element-wise summation. Note that P5

is obtained by only C5 as illustrated in [5]. However, this

direct addition strategy does not take into account the imbal-
ance between semantic features at different scales. As dis-
cussed in [15, 16], the high-level features have rich channel
information while the low-level features have more detailed
spatial information. Inspired by that, we propose the MSBM
blocks to capture more spatial information and richer channel
information during multi-scale feature fusion.

As illustrated in Fig. 1, the MSBM block adopts global
average pooling (GAP) and two 1D convolutional layers with
non-linear function to explore channel attention from high-
level features of backbone. For Pi, the channel attention CAi
can be defined as

CAi = conv1D(ReLU(conv1D(GAP(Ci+1))), (2)

where conv1D(·) denotes the operation of 1D convolution as
defined in [19], and ReLU(·) indicates the ReLU function.
Considering that the low-level feature maps have more de-
tailed spatial information, MSBM block deploys two point-
wise convolutional layers to capture spatial attention SAi,
which can be defined as

SAi = PointConv(ReLU(PointConv(Ci))), (3)

where PointConv(·) indicates the function of pointwise con-
volution [20]. With estimated channel fusion weights CA3,
CA4 and spatial fusion weights SA3, SA4, the refined inte-
grated features can be generated as

P
′

i = CAi ⊗ Pi ⊗ SAi (i = 3, 4), (4)

where ⊗ denotes element-wise multiplication.
Furthermore, we discover that RetinaNet does not take

full advantage of the shallow features of C2. In BFPN, we
utilize a simple 3×3 convolutional layer with stride = 2 to in-
tegrate C2 into the pyramid feature P

′

3 by element-wise mul-
tiplication, i.e.,

P
′′

3 = Cstride=2(C2)⊗ P
′

3, (5)

where Cstride=2 indicates the operation of 3×3 convolution
with stride = 2. To be consistent with RetinaNet, we gather
P

′′

3 , P
′

4, P5, P6 and P7 as final detection features.
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Table 1. Comparison with representative detectors on DIOR dataset [21]. Best results are marked in bold.
Method AL AT BF BC BG CM DM EA ES GC GF HB OP SP SD ST TC TS VH WM mAP time(ms)

Two-stage methods
FRCNN [4] 53.6 49.3 78.8 66.2 28.0 70.9 62.3 69.0 55.2 68.0 56.9 50.2 50.1 27.7 73.0 39.8 75.2 38.6 23.6 45.4 54.1 -

FPN [5] 54.0 74.5 63.3 80.7 44.8 72.5 60.0 75.6 62.3 76.0 76.8 46.4 57.2 71.8 68.3 53.8 81.1 59.5 43.1 81.2 65.1 112.5
PANet [7] 63.0 69.6 71.9 81.3 45.9 72.3 52.5 62.2 63.2 69.3 79.3 47.4 58.2 72.0 73.9 70.5 87.1 53.1 54.1 85.8 66.6 169.5

CBD-E [11] 54.2 77.0 71.5 87.1 44.6 75.4 63.5 76.2 65.3 79.3 79.5 47.5 59.3 69.1 69.7 64.3 84.5 59.4 44.7 83.1 67.8 277.8
CSFF [12] 57.2 79.6 70.1 87.4 46.1 76.6 62.7 82.6 73.2 78.2 81.6 50.7 59.5 73.3 63.4 58.5 85.9 61.9 42.9 86.9 68.0 101.0

One-stage methods
YOLOv3 [14] 72.2 29.9 74.0 78.6 31.2 69.7 26.9 48.6 54.4 31.1 61.1 44.9 49.7 87.4 70.6 68.7 87.3 29.4 48.3 78.7 57.1 36
YOLOv4 [13] 71.3 51.2 66.5 86.9 33.2 72.7 45.4 55.9 47.4 65.6 60.6 56.0 51.8 82.5 63.8 62.0 80.3 52.5 42.4 73.1 61.1 25
RetinaNet [6] 53.7 77.3 69.0 81.3 44.1 72.3 62.5 76.2 66.0 77.7 74.2 50.7 59.6 71.2 69.3 44.8 81.3 54.2 45.1 83.4 65.7 83.3
RetinaNet∗ [6] 54.6 83.6 73.5 87.9 40.1 74.4 66.1 83.2 61.8 80.0 80.0 43.2 59.6 71.2 66.6 48.1 87.5 58.0 43.0 86.0 67.4 82.9
O2-DNet [10] 61.2 80.1 73.7 81.4 45.2 75.8 64.8 81.2 76.5 79.5 79.7 47.2 59.3 72.6 70.5 53.7 82.6 55.9 49.1 77.8 68.4 131.2

Ours 59.8 84.9 73.5 88.3 45.2 77.6 69.1 83.7 71.4 81.7 80.6 50.1 61.8 71.3 68.4 50.0 87.3 54.0 43.1 88.1 69.5 87.8

RetinaNet∗ denotes our implementation, higher than the official performance. Airplane (AL), airport (AT), baseball field (BF), basketball court (BC),
bridge (BG), chimney (CM), dam (DM), expressway service area (EA), expressway toll station (ES), golf course (GC), ground track field (GF), harbor
(HB), overpass (OP), ship (SP), stadium(SD), storage tank (ST), tennis court (TC), train station (TS), vehicle (VH), and wind mill (WM).

3.2. Task-Interactive Head

Object detection contains two sub-tasks, i.e., regression
and classification. Deep learning methods deploy two sub-
networks to deal with two sub-tasks respectively. As illus-
trated in [18], there is a degree of misalignment when two
separate branches are used to make predictions. Based on this
discovery, we propose a task-interactive head to alleviate the
task misalignment between classification and localization.

On the one hand, we adopt an efficient information inter-
action strategy to balance the feature layers between the two
sub-networks. As shown in Fig. 1, suppose Fi(·), Li(·) (i =
1,2,3,4) as the convolutional layers of the two sub-networks,
and the output features of them can be represented as

Fouti+1 = Fi+1(Fouti ⊕ Louti), (6)

Louti+1 = Li+1(Louti ⊕ Fouti) (7)

where Fouti and Louti denote the output features of classi-
fication and localization sub-networks, respectively. By this
operation, the features of two sub-networks can be mutual
supervised by each other.

On the other hand, we introduce Squeeze and Excitation
(SE) blocks [22] to perform channel control as displayed in
Fig. 1. It further highlights the performance of TIH through
information interaction between different channels, which
can be defined as

Fout
′

4 = Fout4 ⊗ SE(Concat(Fout1,2,3,4)) (8)

Lout
′

4 = Lout4 ⊗ SE(Concat(Lout1,2,3,4)) (9)

where SE(·) denotes the function of SE block, and Concat(·)
indicates the operation of channel concatenation. Fout

′

4 and
Lout

′

4 are utilized for minimizing the classification loss func-
tion and regression loss function, respectively.

3.3. Loss Function

The multi-task loss is used to balance classification and
localization tasks [4] in object detection. With reference to

RetinaNet, the loss function of S2BDet is defined as

Ltotal = λ1Lcls + λ2Lreg, (10)

where Lcls, Lreg indicate classification and regression loss.
For consistency, we set λ1 = λ2 = 1.

The focal loss proposed by RetinaNet [6] is adopted as the
classification loss in our detector, i.e.,

Lcls = −αt(1− pt)γ log(pt), (11)

where αt and γ are hyperparameters to moderate the weights
between easy and hard examples. In our experiments, we set
α = 0.25 and γ = 2 as the same as RetinaNet. pt is defined as

pt =

{
p if y = 1

1− p otherwise,
(12)

where y = 1 specifies the ground-truth and p is the estimated
probability for the category. Besides, we introduce Smooth
L1 loss as Lreg referring to Faster RCNN [4].

4. EXPERIMENTAL RESULTS

4.1. Experiments Setup

Datasets: The datasets used for evaluation are DIOR [21]
and HRRSD [23]. DIOR is the largest dataset for horizon-
tal geospatial target detection. It includes 23463 images with
192472 instances of 20 classes, which is divided into 11725
images as training subset and 11738 images as testing subset.
HRRSD contains 21761 images with 55740 objects of 13 cat-
egories. It is segmented into 10818 images for training and
10943 images for testing.

Evaluation Metrics: We introduce the average precision
of each class (AP), the mean average precision of all classes
(mAP) and running time per image for evaluation metrics.

Training Settings: Our experimental environment is Py-
Torch framework in Ubuntu 18.04 operating system, and all
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experiments are performed on 4 NVIDIA GTX 1080Ti GPUs.
We adopt stochastic gradient descent algorithm (SGD) for op-
timizing parameters, and total epochs is 20. The initial learn-
ing rate of SGD is 0.02. The weight decay and momentum of
SGD are 0.0001 and 0.9, respectively. In all experiments, we
employ 0.5 horizontal flips as data augmentation.

Fig. 2. Typical comparative detection results on DIOR [21].
The top line is the detection results of the baseline while the
bottom line is the detection results of S2BDet.

4.2. Ablation Study

We set up ablation experiments on DIOR test set as shown
in Table 2. RetinaNet [6] is the baseline which reaches 67.44
mAP on DIOR. To detect multi-scale objects in RSIs effec-
tively, we propose the BFPN. Our method only with BFPN
obtains 69.05% mAP (1.61% ↑). It illustrates that the strategy
of spatial localities and channels of multi-scale features via
BFPN indeed contributes to the network for interpreting RSIs.
Furthermore, our method achieves 68.69% mAP when re-
moving the integration ofC2 in BFPN, which shows the effec-
tiveness of combining the shallow feature C2 into BFPN. Our
method shows 68.62% mAP when adding TIH to replace the
original detection head. It reflects that the employment of TIH
reduces the feature misalignment between two sub-tasks, and
thus a considerable detection improvement is gained. When
integrating both BFPN and TIH into baseline, we observe that
the detection accuracy is further improved, reaching 69.49%
mAP (2.05% ↑). Meanwhile, our method has corresponding
improvements on AP75, APs, APm and APl. Fig. 2 demon-
strates the typical comparative detection results on DIOR. It
is clear that S2BDet is able to detect more geospatial objects
than baseline, especially small vehicles, airplanes and ships.

4.3. Comparison with the State-of-the-Arts

We compare our method with several state-of-the-arts in
Tables 1, 3 on DIOR [21] and HRRSD [23]. As for DIOR,
our approach achieves the best results in eight of the total 20
categories and reaches the running speed of 87.8ms per image
(only 4.9ms ↓ than baseline). The mAP of S2BDet is superior

Table 2. Ablation experiments on DIOR test set [21]. Best
results are marked in bold. “>” denotes BFPN without inte-
gration of C2.

BFPN TIH mAP AP75 APs APm APl
× × 67.44 49.68 8.71 35.83 65.82
> × 68.69 50.67 9.33 37.30 66.79
X × 69.05 50.86 9.93 37.15 66.91
× X 68.62 49.16 9.13 35.67 65.19
X X 69.49 51.35 9.94 37.34 67.14

Table 3. Comparison with representative detectors on
HRRSD dataset [23]. Best results are marked in bold.

Method YOLOv3 FCOS FRCNN RetinaNet Ours
mAP 71.80 82.26 83.10 83.53 85.20

to two-stage algorithms (e.g., CBD-E [11], CSFF [12]) and
one-stage method (O2-Det [10]) which are designed specifi-
cally for remote sensing imagery. Among them, CBD-E and
CSFF is time-consuming because of the complex computa-
tion of two stages (277.8ms and 101.0ms per image respec-
tively). In addition, O2-Det does not pay attention to the fea-
ture misalignment of the detection head, and its performance
of mAP and running time are not as good as our method. Al-
though YOLOv3,v4 [13, 14] achieve fastest running speeds
on DIOR (36ms and 25ms per image respectively), their de-
tection accuracies are too low. Compared with the two-stage
methods [4, 5, 7, 11, 12], S2BDet has advantages not only
in running speed but also in detection accuracy. In conclu-
sion, S2BDet has the most excellent performance in keeping
speed/accuracy trade-off compared with other approaches.

With the respect of HRRSD [23], we compare our method
with several representative detectors such as YOLOv3 [14],
FCOS [17], Faster RCNN [4] and RetinaNet [6]. Among
competitors, our method is 1.67% mAP higher than the base-
line as shown in Table 3, which illustrates the effectiveness of
our proposed modules.

5. CONCLUSION

In this paper, an improved detector S2BDet with two
novel upgrades based on RetinaNet is proposed for remote
sensing imagery. We conduct ablation and comparison ex-
periments to testify the function of the proposed balanced
feature pyramid network and task-interactive head. Our de-
tector outperforms many state-of-the-art algorithms on two
large geospatial object detection datasets. Compared with
them, S2BDet breaks the performance disadvantage of one-
stage algorithms and reaches state-of-the-art results. Besides,
the presented detector maintains a considerable speed advan-
tage because the proposed modules have fewer parameters. In
the future, we will explore a task alignment learning strategy
based on one-stage detectors to further improve the prediction
performance for geospatial object detection.
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