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Structured Cross-Resolution Distillation for Remote
Sensing Salient Object Detection

Yanfeng Liu

Abstract—Existing salient object detection methods for op-
tical remote sensing images achieve superior results with high-
resolution inputs but exhibit significant degradation in low-
resolution conditions. To bridge this resolution discrepancy,
we propose a structured cross-resolution knowledge distillation
(SCRKD) framework designed for severely low-resolution inputs.
It leverages high-resolution models as teachers to guide low-
resolution students through three synergistic distillation mech-
anisms: 1) multi-view correlation distillation, 2) multi-scale
feature distillation, and 3) decoupled saliency distillation. In
addition, we present Cascaded SCRKD that progressively refines
structured knowledge in a multi-stage manner, achieving further
performance boosts. Experiments on three datasets indicate that
SCRKD surpasses 13 state-of-the-art methods across various
cross-resolution settings. Besides, our framework based on three
distinct baselines validates its model-agnostic nature. This work
provides an efficient solution for low-resolution salient object
detection. Code is available at https.://github.com/lyf0801/SCRKD.

Index Terms—Salient object detection, optical remote sensing
image, cross-resolution distillation, multi-view correlation, decou-
pled saliency distillation.

I. INTRODUCTION

ALIENT object detection in optical remote sensing images

(RSI-SOD) aims to localizing geospatial regions of inter-
est and man-made objects. As a fundamental preprocessing
task in remote sensing [1], it facilitates downstream applica-
tions such as super-resolution [2], object detection [3], and
scene understanding [4]. In recent years, research efforts in
both computer vision and remote sensing communities have
focused on optimizing RSI-SOD for real-time execution.

As for SOD in natural scenarios, early approaches provide
several typical solutions to design lightweight SOD models
and reduce the inference overhead [5], such as introducing
depthwise separate convolution, and designing flexible self-
adaptive operators, etc. Recently, Wang et al. [6] first present
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Fig. 1. (a) Illustration of the proposed SCRKD framework for RSI-SOD. (b)
Max-Fm score comparison of on ORSSD and EORSSD datasets for 112x 112
student, 448 x448 teacher, SCRKD, and Cascaded SCRKD, respectively.

a backbone network specialized for SOD that eliminates Ima-
geNet pre-training, which greatly alleviates feature complexity.
However, these research efforts for natural scenes cannot di-
rectly perform well in remote sensing due to the distinct chal-
lenges of optical RSIs. To tackle the above problem, there are
several research studies aiming at lightweight RSI-SOD [7],
[8], [9]. All of the above-mentioned methods widely employ
lightweight backbone networks (e.g., MobileNet, RepVGG)
for multilevel feature extraction, reducing both model parame-
ters and computational costs while accelerating inference. For
example, Li et al. [9] introduce RepVGG-AQ with a small
number of parameters to extract multiscale features, and utilize
lightweight group attention and enhanced dynamic encoding
module to boost spatial and channel attention information.
Compared to ResNet-based saliency models, the above ap-
proaches definitely show an advantage in reasoning speed
and maintain considerable detection performance. However,
existing frameworks typically require high-resolution inputs
for sufficient contextual knowledge, yet fail to tackle low-
resolution RSIs. Particularly, Liu et al. [2] interestingly explore
low-resolution RSI-SOD and propose a novel approach to dis-
till cross-task knowledge from super-resolution to SOD. Nev-
ertheless, the above work merely accounts for low-resolution
settings of 224 x224 and neglects to investigate extremely low-
resolution scenarios such as 112x112 and 56 x56.

As shown in Fig. 1(b), when deploying PSPNet [10] as the
baseline network, its 448 x448 version could achieve Max-
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Fm scores of 92.51% and 90.30% on ORSSD and EORSSD,
respectively. However, if the training scale is reduced to
112x112, the Max-Fm indicators of the same model decay
from 92.51% to 86.87% and from 90.30% to 82.84% for
both datasets. We attribute this degradation to the substan-
tial domain gap between low-resolution and high-resolution
RSIs, where low-resolution images inherently lack adequate
spatial-contextual knowledge, causing severe deterioration in
deep feature representation. Consequently, existing models
struggle to accurately identify salient objects against complex
background with irregular topology. This resolution deficiency
creates significant challenges for existing methods in handling
low-resolution scenes, which significantly hinders the deploy-
ment of neural networks for practical RSI analysis, posing
urgent challenges to the remote sensing community.

To address the above research issues, we present a structured
cross-resolution knowledge distillation (SCRKD) framework
and an enhanced version, Cascaded SCRKD, to efficiently
transfer abundant cross-resolution knowledge for RSI-SOD.
Typically, three synergistic distillation strategies are pro-
posed in Fig. 1(a), i.e., multi-view correlation distillation
(MVCD), multi-scale feature distillation (MSFD), and de-
coupled saliency distillation (DSD). Firstly, MVCD defines
three representations to exploit height-, width-, and channel-
wise correlation information across resolutions in an omni-
dimensional manner. Secondly, we compensate for cross-
resolution discrepancies between student and teacher models
via MSFD to adaptively optimize scale-specific low-resolution
features. Thirdly, we propose DSD to reformulate saliency
prediction as a dual-category segmentation task, and perform
KL divergence over the channel dimensions to constrain the
cross-resolution distribution variance. As shown in Fig. 1(b),
SCRKD boosts Max-Fm of 112x 112 PSPNet from 86.87% to
88.82% and 82.84% to 84.94% on both datasets. Additionally,
its cascaded version further increases the student’s perfor-
mance. To our knowledge, this work is the first systematic
study on cross-resolution distillation for RSI-SOD.

Furthermore, we evaluate the proposed SCRKD framework
based on PSPNet [10], SegFormer [11], and TransXNet [12].
Experiments under diverse cross-resolution settings validate its
model-agnostic nature. During inference, neither the teacher
nor the assistant model is required, eliminating additional
computational overhead. Thus, this study provides an alter-
native approach for efficient RSI-SOD instead of elaborate
lightweight models, offering a promising research direction.

The main contributions of this work are listed as follows.

1) We investigate an efficient cross-resolution distillation
framework, SCRKD, for RSI-SOD, offering valuable
insights for remote sensing dense prediction.

2) We design three synergistic cross-resolution distillation
strategies from omni-dimensional correlation, spatial
pyramid, and saliency prediction levels.

3) To progressively leverage high-resolution knowledge, we
construct a multi-stage Cascaded SCRKD framework
that delivers further performance gains.

The remaining article is organized as follows. Section II

presents related studies of RSI-SOD and knowledge distilla-
tion. We describe the methodology of the proposed SCRKD

in Section III and discuss experiments in Section IV. Finally,
Section V draws a conclusion.

II. RELATED WORK
A. Remote Sensing Salient Object Detection

RSI-SOD has garnered significant attention due to its critical
role in various remote sensing applications. Over the past
decade, numerous algorithms have been proposed to address
the unique challenges of RSI-SOD, including complex back-
grounds, varying object scales, diverse spatial resolutions, and
adversarial defenses. These methods can be broadly cate-
gorized into traditional approaches and deep learning-based
methods. In this subsection, we provide the brief review of
deep RSI-SOD models in recent years.

Initially, a number of research efforts have developed some
large-scale public datasets for RSI-SOD [13], [14], [15], [16],
and then numerous deep models have been proposed in rapid
succession. Early approaches mostly concern with multi-scale
feature fusion, edge guidance, local and global collaborative
learning, multiple attention mechanisms, lightweight models,
and so on. For instance, Liu et al. [17] introduce an efficient
global context strategy to compensate for the local spatial
features of convolutional networks. Xie et al. [18] employ
boundary features to guide channel attention to salient edges
and maintain spatial details. In addition, Wang et al. [19]
present an mutually supervised bootstrap loss for edge and
saliency to enhance the learning of irregular topologies and
complex edges. Recent research studies have focused on
typical novel issues in RSI-SOD, such as adversarial attacks,
uncertainty, ensemble learning, novel network structures, and
pseudo-label contrastive learning. For example, Yan et al. [20]
propose to combine convolutional operators and self-attention
mechanisms, and design a heterogeneous adaptive semantic
model for this topic. Liu et al. [21] propose an integrated and
detailed ensemble learning framework, which addresses the
imbalance between deep and shallow features and effectively
preserves object integrity and edge details.

While existing studies have made substantial contributions
to this field, their reliance on high-resolution inputs ren-
ders them ineffective under low-resolution conditions. In this
article, we investigate cross-resolution distillation for low-
resolution RSI-SOD, paving the way for solving the afore-
mentioned challenges.

B. Knowledge Distillation in Remote Sensing

In recent years, the remote sensing community has proposed
knowledge distillation-based studies for various downstream
tasks, such as object detection [22], semantic segmentation
[23], change detection [24], scene understanding [25], and land
cover classification [26]. For instance, Li et al. [27] combine
feature-based, relation-based, and instance-aware distillation
methods for efficient remote sensing object detection. Dong
et al. [23] introduce a distilling segmenter framework for
semantic segmentation of RSIs, leveraging channel-weighted
attention-guided feature distillation and target-nontarget distil-
lation strategies. Typically, Pang et al. [24] introduce a hierar-
chical correlation distillation framework for change detection
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across image pairs of varying quality, transferring knowledge
from high-quality to low-quality samples. In addition, Zhang
et al. [3] present the super-resolution generative distillation
and cross-modality affinity distillation to leverage knowledge
from RGB modality for thermal small-object detection.

To summarize, these different approaches are all based on
knowledge distillation, which leverage multilevel knowledge
from complicated teacher models to achieve compact student
models for remote sensing image processing.

C. Cross-Resolution Knowledge Distillation

Existing literature on cross-resolution distillation [28] pri-
marily focuses on low-resolution face recognition [29], low-
resolution object detection [30], video processing [31], etc.

Typically, Shin et al. [32] propose an attention similarity
knowledge distillation approach to enhance low-resolution
face recognition by transferring attention maps from a high-
resolution teacher network. Zhu et al. [33] present scale-aware
knowledge distillation framework, a novel approach to im-
prove small object detection through a scale-decoupled feature
distillation module and a cross-scale assistant. Ma et al. [31]
improve video recognition accuracy on low-resolution frames
by addressing the mismatch between network architecture and
input scale. Furthermore, Guo et al. [34] extend distillation
to the input level, enabling flexible cost control by adjusting
both network architecture and image quality, and introduce an
input spatial representation distillation mechanism for image
classification and object detection tasks. Recently, Wang et
al. [35] propose a multi-scale cross distillation method, which
combines multi-scale training to enable single-scale inference
for aerial object detection, and integrates adaptively cross-scale
knowledge through a parallel multi-branch architecture.

However, existing methods suffer from three critical limi-
tations: 1) hard to jointly explore structured cross-resolution
knowledge at correlation-, spatial-, and logit-level; 2) inef-
fective knowledge transfer on imbalanced saliency prediction
distributions; 3) lack of exploration for ultra-low-resolution
student scenarios (e.g., 112x112 or 56x56 inputs). To this
end, we firstly introduce cross-resolution distillation into RSI-
SOD and propose an efficient distillation framework tailored
for low-resolution RSIs, compensating for the drastic perfor-
mance degradation caused by insufficient spatial resolution.

III. METHODOLOGY

This section describes the proposed SCRKD in detail. The
core techniques of SCRKD are discussed elaborately.

A. Overview of SCRKD

As illustrated in Fig. 2, the proposed SCRKD consists
of a well-trained teacher model, a learnable student model,
and three designed synergistic distillation modules: MVCD,
MSFD, and DSD. Specifically, the teacher model takes high-
resolution RSIs as input and generates high-resolution saliency
maps, while the student model feeds low-resolution RSIs
and receives multi-level structured knowledge from the high-
resolution teacher model to predict refined saliency maps.

During the training phase, the student model incorporates
distillation losses from MVCD, MSFD, and DSD, along with
the primary saliency detection loss, which is defined as:

Liotal = Lsop +a-Lyvep +B-Lysrp +v-Lpsp, (1)

where Lyrvep, Lymsep, and Lpgp denote losses of MVCD,

MSFD, and DSD, respectively. Lsop represents saliency loss,

which combines a binary cross-entropy (BCE) loss and a

weighted intersection over union (wloU) loss as follows:
Lsop = (Lbce(Sh, Sg) + Luiou(Shy 89)) /27", ()

i=1
where S, and S, indicate predicted and ground-truth saliency
maps, and n is the number of detection heads for supervision.

B. Feature Disentanglement and Adaptive Aggregation

The proposed MVCD, MSFD, and DSD facilitate the
transfer of complementary structured knowledge from the
self-correlation level, multiscale feature level, and saliency
prediction level, respectively. Among them, both MVCD and
MSEFD distill knowledge to the multi-scale features of the stu-
dent model. However, the standalone student feature struggles
to consistently and cohesively capture low-resolution scale-
specific knowledge, scale-invariant correlation representations,
and high-resolution fine-grained features simultaneously. To
address this limitation, we introduce a simple yet effective
feature disentanglement and adaptive aggregation mechanism.

As shown in Fig. 2, for the feature of student at a given
stage, we employ three parallel convolutional layers to perform
adaptive transformation, yielding three distinct feature embed-
dings. These representations are used for: (1) the student’s
independent low-resolution saliency feature representation, (2)
learning the correlation distillation knowledge from the teacher
model, and (3) learning the spatial feature knowledge from the
teacher model. This process can be expressed as:

f5. fmveps fusep = Fpis(fs), 3)

where Fp;s(+) denotes the function of feature disentanglement
procedure, and fg indicates the scale-specific low-resolution
student feature. f¢, farvep, and fargpp represent the above-
mentioned three distinct feature embeddings.

After the distillation training of SCRKD, we introduce an
convolution-based attention method, as shown in “Adaptive
Aggregation” in Fig. 2, to combine the student’s preserved
low-resolution feature, the distilled correlation feature, and the
distilled high-resolution spatial feature, as follows:

wy, wa, w3 = 0(Csx3([fLr: fMveD, fusrp])),  (4)

where C3y3(+) indicates the standard 3x3 convolution for at-
tention weights generation, |-, -] denotes channel-wise concate-
nation, and o(+) represents the Sigmoid activation function.
Then, we could utilize these dynamic weights to aggregate
the three disentangled embeddings as a unified vector, i.e.,

¢ =Csxs(wr - f§ ®we - fuvep Dws - fusrp),  (5)

where & denotes the element-wise summation, and fg is the
embedding for student saliency head to yield final predictions.
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Fig. 2. Illustration of the proposed SCRKD, our three novel distillation modules are presented in detail: (a) multi-view correlation distillation (MVCD); (b)
multi-scale feature distillation (MSFD); (c) decoupled saliency distillation (DSD). Pyramid pooling module (PPM) is presented in our baseline PSPNet [10].

Feature disentanglement and adaptive aggregation are discussed in Section III-

C. Multi-View Correlation Distillation (MVCD)

Global-level scene-invariant representation is a crucial prop-
erty for characterizing diverse RSIs with various salient objects
[4], as they remain consistent regardless of variations in spatial
scales. Existing distillation methods predominantly emphasize
channel-wise correlations [36] or cross-sample relationships
[37], always neglecting the inherent multi-level correlations
within the features. Moreover, the efficient measurement of
multi-dimensional global structured correlation for the RSI-
SOD task remains an unresolved challenge. To address these
limitations, we introduce a cross-resolution multi-view corre-
lation distillation approach, referred to as MVCD.

As illustrated in Fig. 2(a), we propose an omni-dimensional
feature transformation method to characterize saliency knowl-
edge across different dimensions, namely the channel level,
height level, and width level. These transposed vectors from
different dimensions capture complementary global factors,
playing a crucial role in representing salient objects. For
a teacher-student feature pair fr, fyyvep € REXHXW,
the comprehensive transformation method generates three re-
shaped features: S, € RE*HW g, ¢ RHXCW g = ¢
RWXCH for the student and T, € REXHW T3, ¢ RHXCW,
T, € RWXCH for the teacher, denoting the reshaped features
along the channel, height, and width dimensions, respectively.

Based on the aforementioned transposed features, we can
employ cosine similarity to compute omni-dimensional self-
correlation matrices for both the teacher and student spatial
features. For instance, for the student, its channel-wise corre-
lation matrix can be expressed as:

S, - ST

c RCXC
[1Secll2 - 1152 1|2 7

Cs = (6)

where ||-||2 indicates the Euclidean normalization, and C's rep-
resents the channel-wise correlation map of student. Similarly,

B). Note that we eliminate PPM for student illustration for a better view.

we can obtain height-wise and width-wise correlation matrices
Hg and Wy for the student, as well as the three-dimensional
self-correlation matrices Cr, Hy, and W for the teacher.
To enable the low-resolution student to learn structured
knowledge from the high-resolution teacher effectively, we
employ a straightforward yet efficient optimization function.
This function guides the student to mimic the scale-invariant,
omni-dimensional correlation knowledge, formulated as:

Lyvep = ||Cs—Crlli+||Hs—Hr|1 +|[Ws—Wrl|1, (7)

where ||-||; denotes L1 loss function. Through this comprehen-
sive global correlation guidance, the student is able to capture
scale-invariant abstract semantic information from the teacher,
thereby exploiting more valuable clues for RSI-SOD.

D. Multi-Scale Feature Distillation (MSFD)

High-resolution RSIs can extract more discriminative ac-
tivations for salient objects, offering valuable hints for low-
resolution students to learn fine-grained features. However,
the huge resolution gap between high-resolution teachers and
low-resolution students makes directly one-to-one stage-wise
feature matching impractical [38]. While aligning features with
identical spatial scales is possible, this approach inevitably
omits some critical high-resolution contextual knowledge, lim-
iting the capacity of feature distillation [39]. To address this is-
sue, we propose to integrate multi-scale low-resolution student
features to adaptively incorporate high-resolution contextual
guidance from the teacher. This ensures all stages of student
and teacher features participate in distillation, maximizing the
potential of cross-resolution spatial feature transfer.

As presented in Fig. 2(b), to distill knowledge from the
high-resolution teacher feature fr at a specific stage, MSFD
first employs bilinear upsampling, adaptive average pooling,
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or an identity mapping to align the resolutions of the multi-
scale low-resolution student features with f7. Subsequently, a
convolution is utilized to refine the aligned features f.o, i.e.,

fcom = CBXS([falign(fJIV[SFD)a (X3} falign(f;\l/[SFD)])a (8)

where Foign () denotes the spatial alignment function men-
tioned above, and n indicates the number of multi-scale stages
(e.g., n =5 for PSPNet [10] and n = 4 for SegFormer [11]).

Then, we perform the dot product function between the
combined student embeddings f..,, and the high-resolution
teacher feature fr to generate the affinity map A as follows:

fcom ) f’}:
b

T1

A= 9

where 71 is a learnable parameter to control the sharpness
of softmax logits during the training phase. Moreover, the
sum-to-one strategy is introduced via a softmax function to
calculate the integration weights for f1,5pp, -.-

exp(Ai)
Z;L:1 exp(A;)

Therefore, a dynamically integrated student feature fp can be
obtained through an adaptive weighted summation, as follows:

n .
s [hrsFps 1€

A= (10)

n
fo = XN ® Fatign(firsrp)s (1)
i=1
where ® indicates element-wise multiplication function.

As shown in Fig. 2(b), unlike traditional feature distillation
losses that solely focus on absolute errors between features, we
additionally introduce multi-scale global pyramid pooling to
guide the student in learning abstract patterns of the teacher
feature. This approach aims to preserve scale-invariant con-
textual structured knowledge across resolutions. Consequently,
the overall loss function of MSFD can be formulated as:

4
Lusrp = |fr = follz+ Y _Pai(fr) = Pai (£p)l]2, (12)
i=0
where Pqi(-) is the global average pooling operation with an
output size of 2¢ x 2%, and ||+, -||o denotes the L2 loss function.

E. Decoupled Saliency Distillation (DSD)

The original logit distillation utilizes a temperature-scaled
softmax normalization to produce a unified logit probabil-
ity distribution, followed by KL divergence for distillation.
Nowadays, this approach has been generalized to other tasks,
e.g., image segmentation [40] and multi-category classification
[41]. However, these tasks distinct significantly from SOD,
as they involve predictions for multiple semantic categories,
whereas SOD generates a single-category saliency map. As a
result, traditional logits distillation can only be applied along
the spatial dimensions of H x W. However, applying softmax
to a single-category saliency map with a large spatial size,
where predictions vary significantly across pixels, results in
the loss of discriminative information, such as extremely high
and low activation values, making it impractical for RSI-SOD.
To address this deficiency, we propose to leverage non-salient,
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/

Fig. 3. Illustration of Cascaded SCRKD, which distills high-resolution teacher
knowledge to intermediate-resolution assistant in the first stage, and then
distills assistant knowledge to low-resolution student in the second stage.

non-target dark knowledge and design a decoupled saliency
logits distillation method, termed DSD.

As illustrated in Fig. 2(c), DSD first defines a non-saliency
representation, which we believe also contains hidden knowl-
edge beneficial for RSI-SOD. Specifically, for the saliency
maps Sg and S predicted by the student and teacher, we first
apply the sigmoid function to eliminate negative activations
and then subtract them from the all-ones matrix J to derive
the non-saliency maps J — o(S%) and J — o(S7). Then, we
utilize channel-wise concatenation to combine the saliency and
non-saliency maps to obtain decoupled logits as follows:

D% = [0(5%),3 = o(5%)], DT = [o(5"),J —a(5T)], (13)

where Dg and Dy are two-category semantic normalized rep-
resentations. Finally, we employ KL divergence for decoupled
saliency and non-saliency distillation collaboratively, i.e.,

Lpsp = 7ZZKL

=1 j=1

T

D )sz( )), (14)

where 7o is a temperature hyperparameter for soft logits, and
1(-) denotes softmax function. W and H are the width and
height for predicted saliency maps. Benefiting from the above
design, DSD uniformly optimizes the cross-resolution saliency
and non-saliency distribution variance in the output level.

F. Cascaded SCRKD

If there exists an extreme resolution gap between the teacher
and student, such as 448x448 versus 112x 112, directly ap-
plying the proposed SCRKD framework cannot fully unleash
the potential of cross-resolution knowledge distillation. To this
end, we introduce an assistant model with an intermediate
resolution and propose a cascaded SCRKD framework in a
two-stage distillation manner, as illustrated in Fig. 3.

Specifically, in the first distillation stage, we employ the
high-resolution well-trained model as the teacher and the
intermediate-resolution assistant model as the student, execut-
ing the SCRKD framework for distilling. After obtaining the
well-trained assistant model in the first stage, we proceed to
the second distillation stage, where the intermediate-resolution
assistant model serves as the teacher and the low-resolution
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model as the student, performing SCRKD distillation train-
ing once again. Through this two-stage progressive learning
process, the low-resolution student model can capture more
fine-grained cross-resolution knowledge, resulting in a student
model with stronger generalization capabilities.

IV. EXPERIMENTS

In this section, we introduce the experimental protocol,
discuss the comparison analysis and ablation study, and present
the typical visualization to reveal the effects of SCRKD.

A. Experimental Protocol

Here, we briefly introduce the dataset information, evalua-
tion metrics, implementation details, and comparison methods.

1) Datasets: We conduct experiments on three widely-used
RSI-SOD datasets to evaluate the cross-resolution distillation
performance, i.e., ORSSD [14], EORSSD [15], and ORSI-
4199 [16]. Specifically, the ORSSD dataset comprises 800
RSIs, with 600 allocated for training and 200 for testing. The
EORSSD dataset consists of 2000 RSIs, of which 1400 are
used for training and 600 for testing. Additionally, ORSI-4199
is a large-scale dataset containing 4199 images, divided into
2000 for the training subset and 2199 for the test subset.

2) Evaluation Metrics: Three metrics, namely mean abso-
lute error (MAE), F-measure, and S-measure, are employed
for the quantitative comparison. MAE evaluates the absolute
pixel-level difference between the predicted saliency map and
the ground-truth saliency map, i.e.,

1 A
MAE = m;;\sp(zd)—sg(zdﬂa 15)
where S, denotes the predicted saliency map, S, represents the
ground-truth saliency map, ¢ and j are the pixel coordinates,
and W - H is the total number of pixels for an RSL
F-measure is utilized to balance the precision and recall in
saliency detection, which is defined as:

(14 B%) x Precision x Recall

Fs =
o B2 x Precision + Recall

) (16)

where 32 is set to 0.3 as per the original configuration.
S-measure evaluates the structural similarity between the
label and the prediction at both region and object levels:

S = a0 X 85(Sp, Sg) + (1 — @) x S,(Sp, Sy), 17

where S, denotes the object-aware similarity, S, represents
the region-aware similarity, and « is equal to 0.5.

3) Implementation Details: The experimental environment
is Ubuntu 20.04 system and PyTorch 2.1 toolbox, and all
experiments are deployed on a single NVIDIA GeForce RTX
3090 or 4090 GPUs. PSPNet [10] incorporates a five-stage
encoder with ResNet50 pretraining weights. SegFormer [11]
adopts its bl version, with “patch-embedl” set to 2, and it
includes a four-stage encoder with official pre-trained weights.
TransXNet [12] employs its tiny variant, configuring an input
stride of 2 and adopting a four-stage encoder architecture
initialized with official pre-trained weights. Following previ-
ous work [2], [4], [19], [17], we conduct training and testing

on three datasets separately, and employ data augmentation
techniques are applied to the training sets. All saliency map
metrics are computed at a resolution of 448x448. For all
comparative methods and the proposed SCRKD, the AdamW
optimizer is employed for training, with a total of 100 epochs,
a learning rate of 2e-5, and a batch size of 8. To ensure
balanced optimization, we set the loss coefficients to o = 1,
B =1, and v = 10 for PSPNet, « = 0.1, 8 = 1, and
~ = 100 for SegFormer, and o = 0.2, § = 0.6, and v = 20
for TransXNet, effectively aligning the magnitudes of the
SOD and three distillation losses during training. The logit
temperature is simply set to 1. During inference, both the
teacher and the potential assistant in SCRKD can be removed,
thus introducing no additional parameters.

4) Comparison Methods: To provide a comprehensive vali-
dation, we introduce 13 state-of-the-art algorithms for compar-
ison, including six methods for general knowledge distillation:
FitNet [38], AT [42], ReviewKD [43], SRD [44], LogitStdKD
[45], and FAMKD [46], three approaches for dense prediction:
CWD [36], SKD [40], and STONet [47], two algorithms for
cross-resolution distillation: PD [34] and CMHRD [3], and
two lightweight models: ISAANet [48] and SOLNet [9].

B. Preliminary Experiments

We establish three distinct baseline models for validation: 1)
a CNN-based PSPNet [10], 2) a Transformer-based SegFormer
[11], 3) a hybrid CNN-Transformer model, TransXNet [12]. To
systematically evaluate RSI-SOD performance across varying
resolution conditions, we conduct multi-scale experiments at
112x112, 224x224, and 448448, with quantitative results
presented in Table I. As can be observed, the quantitative re-
sults demonstrate consistent performance degradation on both
ORSSD and EORSSD datasets as resolution decreases, con-
firming that lower resolutions significantly impair RSI-SOD
performance. For the ORSI-4199 dataset, metrics at 448x448
and 224 x224 exhibit mixed trends, which we attribute to the
predominance of large-scale salient objects in this dataset.
Consequently, the performance variance across resolutions is
less pronounced compared to other datasets. Based on these
substantial performance discrepancies, we define three cross-
resolution distillation protocols: 1) from 224 x224 to 112x112
for all three datasets; 2) from 448x448 to 224x224 for
ORSSD and EORSSD; and 3) from 448x448 to 112x112
for ORSSD and EORSSD. To further investigate ultra-low-
resolution distillation scenarios, we conduct experiments on
the EORSSD dataset under three cross-resolution settings:
distilling from 1) a 112x112 teacher to a 56x56 student, 2)
a 224x224 teacher to a 56x56 student, and 3) a 448x448
teacher to a 56x56 student. Notably, SCRKD achieves a
remarkable nearly 6% boost in Fz for the 56x56 student
model, demonstrating its superior capability in extreme low-
resolution distillation. Detailed quantitative comparisons for
56x56 students are provided on our GitHub website.

C. Comparison with the State-of-the-Art Algorithms

In this subsection, we firstly employ PSPNet [10] as the
baseline for distillation comparison, then extend to SegFormer
[11] and TransXNet [12] to validate the generalization ability.
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TABLE I
QUANTITATIVE PERFORMANCE OF PSPNET AND SEGFORMER ON THREE RSI-SOD DATASETS WITH VARIOUS TRAINING RESOLUTIONS.
.. . ORSSD Dataset [14] EORSSD Dataset [15] ORSI-4199 Dataset [16]
Networks Publication Input Size MAE] F3T Sn T [MAE] F3% SnT [MAEL F5% Om T
PSPNet [10] CVPR 2017 112x112 | 0.0149 0.8687 0.8944 | 0.0098 0.8284 0.8796 | 0.0367 0.8368 0.8561
PSPNet [10] CVPR 2017 224x224 | 0.0119 0.8981 0.9146 | 0.0077 0.8796 09135 | 0.0344 0.8538 0.8676
PSPNet [10] CVPR 2017 448x448 | 0.0104 09251 0.9309 | 0.0071 0.9030 0.9301 | 0.0350 0.8465 0.8689
SegFormer [11] | NeurIPS 2021 | 112x112 | 0.0163 0.8681 0.8995 | 0.0090 0.8459 0.8947 | 0.0336  0.8499 0.8690
SegFormer [11] | NeurIPS 2021 | 224x224 | 0.0113 09139 0.9273 | 0.0070 0.8917 0.9235 | 0.0307 0.8635 0.8765
SegFormer [11] | NeurIPS 2021 | 448x448 | 0.0106 0.9218 0.9314 | 0.0067 0.9108 0.9348 | 0.0318 0.8631 0.8786
TransXNet [12] | TNNLS 2025 | 112x112 | 0.0133 0.8799 0.9099 | 0.0086 0.8471 0.8979 | 0.0336 0.8492 0.8679
TransXNet [12] | TNNLS 2025 | 224x224 | 0.0102 0.9238 0.9381 | 0.0064 0.9001 0.9296 | 0.0293 0.8716 0.8839
TransXNet [12] | TNNLS 2025 | 448x448 | 0.0086 0.9297 0.9413 | 0.0053 0.9155 0.9408 | 0.0287 0.8703 0.8852
TABLE II

QUANTITATIVE CROSS-RESOLUTION DISTILLATION PERFORMANCE ON THREE RSI-SOD DATASETS WITH 13 KNOWLEDGE DISTILLATION APPROACHES.
THE TOP THREE RESULTS ARE MARKED IN RED, GREEN AND BLUE, RESPECTIVELY.

. . ORSSD Dataset [14] EORSSD Dataset [15] ORSI-4199 Dataset [16]
PSPNet [10] Publication | Input Size MAE] F3T SnT [MAE] F37 SmT [MAEL F;T Bm 1
Teacher CVPR 2017 | 224x224 | 0.0119 0.8981 0.9146 | 0.0077 0.8796 0.9135 | 0.0344 0.8538 0.8676
Student CVPR 2017 | 112x112 | 0.0149 0.8687 0.8944 | 0.0098 0.8284 0.8796 | 0.0367 0.8368 0.8561
+ FitNet [38] ICLR 2016 | 112x112 | 0.0146 0.8787 0.9010 | 0.0090 0.8398 0.8890 | 0.0346 0.8403 0.8623
+ AT [42] CVPR 2017 | 112x112 | 0.0129 0.8851 0.9096 | 0.0091 0.8428 0.8908 | 0.0345 0.8424 0.8639
+ CWD [36] ICCV 2021 112x112 | 0.0138 0.8788 0.9039 | 0.0091 0.8395 0.8870 | 0.0356 0.8399 0.8597
+ ReviewKD [43] CVPR 2021 | 112x112 | 0.0132 0.8860 0.9070 | 0.0089 0.8429 0.8929 | 0.0346 0.8447 0.8638
+ SKD [40] TPAMI 2023 | 112x112 | 0.0140 0.8760 0.8987 | 0.0094 0.8391 0.8865 | 0.0354 0.8389 0.8569
+ SRD [44] AAAI 2024 | 112x112 | 0.0150 0.8764 0.8995 | 0.0095 0.8388 0.8864 | 0.0358 0.8376 0.8588
+ LogitStdKD [45] | CVPR 2024 | 112x112 | 0.0140 0.8732 0.8999 | 0.0100 0.8329 0.8815 | 0.0354 0.8422 0.8626
+ FAMKD [46] WACV 2024 | 112x112 | 0.0141 0.8745 0.8996 | 0.0089 0.8415 0.8898 | 0.0346 0.8436 0.8629
+ STONet [47] TGRS 2024 | 112x112 | 0.0131 0.8802 0.9053 | 0.0095 0.8414 0.8878 | 0.0332 0.8421 0.8646
+ PD [34] TPAMI 2024 | 112x112 | 0.0130 0.8817 0.9045 | 0.0097 0.8367 0.8844 | 0.0348 0.8407 0.8606
+ CMHRD (3] TGRS 2024 | 112x112 | 0.0141 0.8844 0.9040 | 0.0092 0.8368 0.8859 | 0.0354 0.8405 0.8607
ISAANet [48] TGRS 2024 | 112x112 | 0.0139 0.8804 0.9108 | 0.0101 0.8283 0.8861 | 0.0400 0.8191 0.8495
SOLNet [9] TGRS 2025 | 112x112 | 0.0232 0.8307 0.8718 | 0.0139 0.8146 0.8710 | 0.0486 0.8030 0.8260
+ SCRKD (Ours) - 112x112 | 0.0124 0.8917 0.9125 | 0.0090 0.8511 0.8952 | 0.0341 0.8494 0.8671

1) 224x224 PSPNet to 112x 112 PSPNet: First of all, we
employ PSPNet trained at 224 x224 as the teacher and PSPNet
trained at 112x112 as the student to validate the knowledge
transfer capability of SCRKD. As shown in Table II, our ap-
proach achieves the most competitive performance across most
metrics on the three datasets compared to a series of state-of-
the-art methods. Notably, on ORSSD and EORSSD datasets,
the proposed SCRKD improves the F-measure score by over
2% compared to the baseline student, demonstrating impres-
sive performance boosts. Among the competitors, ReviewKD
[43] and AT [42] show the strongest advantages, achieving
sub-optimal results on several metrics. Additionally, FAMKD
[46] and STONet [47] exhibit competitive performance on the
ORSI-4199 dataset but fail to comprehensively surpass the
proposed SCRKD. As illustrated in Fig. 4, SCRKD overcomes
interference from complex backgrounds and cluttered objects
in five typical examples, producing predictions that are closest
to the ground truths. In summary, SCRKD benefits from
comprehensive knowledge transfer at the relation, feature, and
saliency prediction levels, leading to significant improvements
across all three datasets from 224 x224 to 112x112.

2) 224x224 SegFormer to 112x112 SegFormer: To
demonstrate the generalizability and model-agnostic nature of
SCRKD, we employ SegFormer [11], a Transformer-based ar-

chitecture, as the baseline and investigate the cross-resolution
scenario from 224 x224 to 112x112. The experimental results
are presented in Table III. Although it does not outperform
other methods on the S-measure for the ORSI-4199 dataset,
the difference is negligible. It is worth noting that ReviewKD
[43] still achieves sub-optimal results in this scenario, reflect-
ing the effectiveness of feature review for cross-resolution
distillation. However, ReviewKD solely focuses on feature-
level knowledge transfer and fails to explore self-correlation
and saliency prediction-level knowledge, which limits its ap-
plicability to RSI-SOD tasks. This further underscores the
necessity of our proposed SCRKD framework. As can be
observed, SCRKD outperforms a series of state-of-the-art
methods and achieves performance that is remarkably close
to that of the teacher model on the ORSI-4199 dataset. This
significantly mitigates the performance degradation caused by
insufficient contextual information at low resolutions, provid-
ing an effective solution for low-resolution RSI-SOD.

3) 224x224 TransXNet to 112x112 TransXNet: Further-
more, we incorporate a powerful hybrid CNN-Transformer
model, TransXNet [12], as the baseline framework, to vali-
date cross-resolution knowledge distillation from 224 x224 to
112x112. As evidenced by Table IV, our SCRKD outperforms
10 state-of-the-art distillation methods and 2 lightweight ap-
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TABLE III

QUANTITATIVE CROSS-RESOLUTION DISTILLATION PERFORMANCE ON THREE RSI-SOD DATASETS WITH 12 KNOWLEDGE DISTILLATION APPROACHES.
THE TOP THREE RESULTS ARE MARKED IN RED, GREEN AND BLUE, RESPECTIVELY.

SegFormer [11] Publication Input Size ORSSD Dataset [14] EORSSD Dataset [15] ORSI-4199 Dataset [16]
MAE] Fgt Sm T |[MAE|l Fgt Sm T |MAE]l Ig?T Sn?
Teacher NeurIPS 2021 | 224x224 | 0.0113 0.9139 0.9273 | 0.0070 0.8917 0.9235 | 0.0307 0.8635 0.8765
Student NeurIPS 2021 | 112x112 | 0.0163 0.8681 0.8995 | 0.0090 0.8459 0.8947 | 0.0336 0.8499 0.8690
+ FitNet [38] ICLR 2016 112x112 | 0.0147 0.8757 0.9019 | 0.0088 0.8519 0.8973 | 0.0322 0.8513 0.8714
+ AT [42] CVPR 2017 112x112 | 0.0153 0.8726 0.9005 | 0.0087 0.8509 0.8989 | 0.0320 0.8534 0.8722
+ CWD [36] ICCV 2021 112x112 | 0.0146 0.8743 0.8999 | 0.0085 0.8539 0.8957 | 0.0319 0.8537 0.8732
+ ReviewKD [43] CVPR 2021 112x112 | 0.0145 0.8781 0.9047 | 0.0084 0.8585 0.9015 | 0.0318 0.8540 0.8723
+ SKD [40] TPAMI 2023 | 112x112 | 0.0162 0.8691 0.8996 | 0.0084 0.8558 0.8994 | 0.0324 0.8492 0.8699
+ SRD [44] AAAI 2024 112x112 | 0.0161 0.8715 0.8967 | 0.0088 0.8535 0.8974 | 0.0319 0.8539 0.8718
+ LogitStdKD [45] | CVPR 2024 112x112 | 0.0148 0.8746 0.9028 | 0.0088 0.8518 0.8989 | 0.0317 0.8536 0.8730
+ STONet [47] TGRS 2024 112x112 | 0.0164 0.8710 0.9020 | 0.0090 0.8546 0.9007 | 0.0332 0.8511 0.8696
+ PD [34] TPAMI 2024 | 112x112 | 0.0166 0.8711 0.8977 | 0.0091 0.8517 0.8972 | 0.0320 0.8529 0.8722
+ CMHRD [3] TGRS 2024 112x112 | 0.0155 0.8719 0.8987 | 0.0095 0.8471 0.8966 | 0.0325 0.8495 0.8686
ISAANet [48] TGRS 2024 112x112 | 0.0139 0.8804 0.9108 | 0.0101 0.8283 0.8861 | 0.0400 0.8191 0.8495
SOLNet [9] TGRS 2025 112x112 | 0.0232 0.8307 0.8718 | 0.0139 0.8146 0.8710 | 0.0486 0.8030 0.8260
+ SCRKD (Ours) - 112x112 | 0.0141 0.8883 0.9057 | 0.0079 0.8639 0.9052 | 0.0310 0.8576 0.8727
TABLE IV

QUANTITATIVE CROSS-RESOLUTION DISTILLATION PERFORMANCE ON THREE RSI-SOD DATASETS WITH 12 KNOWLEDGE DISTILLATION APPROACHES.
THE TOP THREE RESULTS ARE MARKED IN RED, GREEN AND BLUE, RESPECTIVELY.

TransXNet [12] Publication | Input Size MggiSD ?;taTset [5{;‘:3 ; Mi%RfSDFDBatTaset é:]T £§§I¢419?? ;Dz%tasets :6]T
TEacher TNNLS 2025 | 224x224 | 0.0102 09238 09381 | 0.0064 09001 09296 | 0.0203 08716 0.8830
Student TNNLS 2025 | 112x112 | 0.0133 0.8799 0.9099 | 0.0086 0.8471 0.8979 | 0.0336 0.8492 0.8679
+ FitNet [38] ICLR 2016 | 112x112 | 0.0114 08975 00232 | 0.0076 0.8624 00107 | 0.0309 0.8586 0.8771
+ AT [42] CVPR 2017 | 112x112 | 00114 0.8993 09212 | 0.0075 0.8620 0.9100 | 0.0310 0.8581 0.8763
+ CWD [36] ICCV 2021 | 112x112 | 0.0121 0.8984 0.9216 | 0.0078 0.8645 09112 | 0.0298 0.8600 0.8788
+ ReviewKD [43] | CVPR 2021 | 112x112 | 0.0126 08918 09181 | 0.0077 0.8652 09127 | 0.0313 0.8593 0.8766
+ SKD [40] TPAMI 2023 | 112x112 | 00116 0.8987 09216 | 0.0077 0.8632 0.9086 | 0.0308 0.8576 0.8763
+ SRD [44] AAAI 2024 | 112x112 | 00117 0.8941 09194 | 0.0078 0.8640 0.9089 | 0.0314 0.8594 0.8759
+ LogitStdKD [45] | CVPR 2024 | 112x112 | 0.0121 0.8944 09190 | 0.0081 0.8559 0.9040 | 0.0305 0.8602 0.8778
+ STONet [47] TGRS 2024 | 112x112 | 00109 09017 09253 | 0.0076 0.8621 0.9086 | 0.0305 0.8596 0.8771
+PD [34] TPAMI 2024 | 112x112 | 0.0125 0.8903 00169 | 0.0076 0.8625 0.0097 | 0.0305 0.8597 0.8772
+ CMHRD [3] TGRS 2024 | 112x112 | 00115 09021 09248 | 0.0078 0.8632 0.9087 | 0.0296 0.8608 0.8793
TSAANct [48] TGRS 2024 | 112x112 | 0.0130 0.8804 00108 | 0.0101 0.8283 0.8861 | 0.0400 0.8191 0.8495
SOLNet [9] TGRS 2025 | 112x112 | 00232 0.8307 0.8718 | 0.0139 0.8146 0.8710 | 0.0486 0.8030 0.8260
+ SCRKD (Ours) - TI2x112 | 0.0100 00074 00287 | 0.0060 0.8705 00162 | 0.0205 0.8636 0.8805

proaches across all evaluation metrics on three datasets. No-
tably, SCRKD enhances the Fj3 score of 112x112 students by
2.75%, 2.34%, and 1.44% on the three datasets, respectively,
validating its consistent generalization capability.

4) 448x448 PSPNet to 224x224 PSPNet: We further in-
vestigate the 448 x448 to 224 x224 distillation scenario using
PSPNet as the teacher-student pair. As quantified in Table V,
our proposed approach achieves the best performance across
all metrics on both datasets. In this cross-resolution setting,
CWD [36] and AT [42] produce competitive results, PD
[34] and CMHRD [3] also exhibit particular advantages on
the EORSSD dataset. By comparison, the proposed SCRKD
reaches a 2.04% improvement in F-measure on the ORSSD
dataset, which is unmatched by other counterparts. In addition,
SCRKD yields 92.95% and 92.70% in terms of S-measure
on ORSSD and EORSSD datasets, respectively, showing im-
pressive near-teacher performance. To visualize the predictions
of all competitors, we present Fig. 5, which demonstrates
that SCRKD can effectively overcome interference from non-

salient objects, generating saliency maps with the highest
completeness and clearest boundaries in typical scenarios. This
further intuitively reveals the effectiveness of our framework.

5) 448x448 PSPNet to 112x112 PSPNet: As reported
in Table V, we employ PSPNet trained at 448x448 as the
teacher model and PSPNet trained at 112x 112 as the student
model to evaluate the performance of various methods. Over-
all, the proposed SCRKD comprehensively outperforms all
competitors across all indicators. Particularly, on the EORSSD
dataset, SCRKD achieves an impressive F-measure score of
nearly 85%. To address the significant challenges posed by the
huge resolution gap in one-step distillation, we introduce an
assistant model trained at 224 x224 and propose a two-stage
Cascaded SCRKD framework. Experimental results indicate
that the cascaded version further enhances the performance of
student, proving its capability to compensate for the contextual
information loss at extremely low resolutions and to learn more
representative and fine-grained cross-resolution knowledge.
Additionally, we visualize the detection results for this cross-
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Fig. 4. Saliency map visualization of 224 x224 PSPNet to 112x 112 PSPNet on the ORSI-4199 dataset. (a) RSIs. (b) Student. (c) FitNet. (d) AT. (e) SKD.
(f) CWD. (g) ReviewKD. (h) SRD. (i) LogitStdKD. (j) STONet. (k) PD. (1) CMHRD. (m) SCRKD. (n) GTs.

Fig. 5. Saliency map visualization of 448 x448 PSPNet to 224 X224 PSPNet on the EORSSD dataset. (a) RSIs. (b) Student. (c) FitNet. (d) AT. (e) SKD. (f)
CWD. (g) ReviewKD. (h) SRD. (i) LogitStdKD. (j) STONet. (k) PD. (I) CMHRD. (m) SCRKD. (n) GTs.

resolution distillation scenario in Fig. 6. It can be observed that
the proposed SCRKD generates saliency maps with clearer
boundaries, higher completeness, and fewer false detection,
further validating the effectiveness of SCRKD.

6) Comparison of PR and F-measure Curves: Furthermore,
we plot the Precision-Recall (PR) and F-measure curves for
12 methods under cross-resolution scenarios on the ORSSD
and EORSSD datasets. In the PR curves, the closer the curve
is to the top-right corner of the coordinate axis, the better the
model’s performance. Similarly, in the F-measure curves, the
larger the area enclosed by the curve and the coordinate axis,
the better the model’s performance. As illustrated in Fig. 7, the
curves of most comparative methods are intertwined, making
it difficult to distinguish their relative performance. In contrast,
the red curves representing SCRKD consistently outperforms
others in all plots, especially PR curves in Fig. 7(a)-(c) and F-
measure curves in Fig. 7(b)-(d), clearly and comprehensively
demonstrating the superiority of the proposed framework over
various distillation-based competitors.

D. Ablation Study

This section presents the ablation study of three distillation
modules and impacts of distillation loss coefficients. Specifi-
cally, the experimental results under three distillation settings

on the EORSSD dataset are presented in Table VI and Fig. 8.
Furthermore, Fig. 9 provides 3D visualizations of S-measure
under varying coefficient configurations.

1) Quantitative Effects: To address the intrinsic challenges
of cross-resolution distillation for RSI-SOD, we present three
novel distillation-based modules from multiple perspectives.
First, we investigate the individual impacts of three distillation
modules on different cross-resolution settings. As shown in
Table VI, for various teacher and student models, it can be
observed that MSFD contributes the most to the performance
boosts of SCRKD across any distillation scenario, followed
by MVCD and DSD. Taking the distillation from 224 x224 to
112x112 as an example, the introduction of any single distil-
lation module (whether MSFD, MVCD, or DSD) enables the
student model to achieve an F-measure score exceeding 84%.
This comprehensively validates the effectiveness of our omni-
dimensional self-correlation distillation, dynamic similarity-
based feature distillation, and decoupled saliency distillation
for low-resolution and extremely low-resolution RSI-SOD.

Interestingly, for the same 112x112 student, the intro-
duction of teachers at different resolutions leads to varying
performance improvements. When a more powerful 448x448
teacher is employed, compared to a 224x224 teacher, both
MVCD and MSFD provide greater performance gains to
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TABLE V
QUANTITATIVE CROSS-RESOLUTION DISTILLATION PERFORMANCE ON THREE RSI-SOD DATASETS WITH 12 KNOWLEDGE DISTILLATION APPROACHES.
THE TOP THREE RESULTS ARE MARKED IN RED, GREEN AND BLUE, RESPECTIVELY.

148% 448 = 224 224 138% 448 = 112x 112

[ ORSSD Dataset [14] | EORSSD Dataset [15] | ORSSD Dataset [14] | EORSSD Dataset [15]
PSPNet [10] Publication - F e 5 F [MAE] Fsf Smf [MAE] F3T SmT [MAEL F3f Smf
Toacher CVPR 2017 | 0.0104 09251 0.9309 | 0.0071 0.9030 0.9301 |0.0104 0.9251 0.9309]0.007] 0.9030 0.9301
Student CVPR 2017 | 0.0119 0.8981 0.9146 | 0.0077 0.8796 09135 |0.0149 0.8687 0.8944 |0.0098 0.8284 0.8796
+ FitNet [38] TCLR 2016 [0.0109 09125 0.9231[0.0060 0.8858 09212 [0.0134 0.8823 09021 0.0088 0.8376 0.8887
+ AT [42] CVPR 2017 | 0.0100 09148 0.9292[0.0072 0.8914 09211 [0.0134 0.8814 0.9008 | 0.0096 0.8394 0.8885
+ CWD [36] ICCV 2021 |0.0117 0.9038 0.9229|0.0071 0.8914 0.9216 | 0.0133 0.8796 0.9047 | 0.0092 0.8387 0.8891
+ ReviewKD [43] | CVPR 2021 | 0.0106 0.9117 0.9240|0.0075 0.8888 0.9232|0.0128 0.8836 0.9067|0.0095 0.8401 0.8874
+ SKD [40] TPAMI 2023 | 0.0109 0.9049 0.9189 | 0.0071 0.8840 0.9202|0.0132 0.8781 0.9011 |0.0096 0.8325 0.8837
+ SRD [44] AAAI 2024 [0.0113 0.9065 0.9161 |0.0076 0.8847 0.9187|0.0149 0.8690 0.8968 | 0.0096 0.8329 0.8842
+ LogitStdKD [45] | CVPR 2024 |0.0130 0.9008 0.9170|0.0077 0.8835 0.9151 |0.0138 0.8793 0.8965 | 0.0089 0.8355 0.8882
+ STONet [47] TGRS 2024 |0.0127 09091 0.9231|0.0074 0.8905 0.9199 |0.0130 0.8861 0.9038 |0.0092 0.8378 0.8872
+PD (34] TPAMI 2024 [ 0.0110 0.9060 09187 0.0074 0.8873 0.9225]0.0137 0.8829 0.9024 | 0.0004 0.8360 0.8847
+ CMHRD [3] TGRS 2024 | 0.0110 0.9063 0.9230 [ 0.0069 0.8854 0.9200 | 0.0143 0.8743 0.9007 | 0.0091 0.8373 0.8853
TSAANet [43] TGRS 2024 [0.0117 09054 00247 | 0.0082 0.8770 0.9160 | 0.0139 0.8804 0.0108 [0.0101 0.8283 0.8861
SOLNet [9] TGRS 2025 | 0.0243 0.8309 0.8755[0.0125 0.8418 0.8908 | 0.0232 0.8307 0.8718|0.0139 0.8146 0.8710
+ SCRKD (Ours) = 0.0096 0.9185 0.9295 | 0.0064 0.8949 0.9270 | 0.0119 0.8852 0.9093 | 0.0088 0.8494 0.8965
+ Cascaded SCRKD _ _ - - - — 00117 08922 0.9146 |0.0083 0.8523 0.8982

(b)

Fig. 6. Saliency map visualization of 448x448 PSPNet to 112x 112 PSPNet on the EORSSD dataset. (a) RSIs. (b) Student. (c) FitNet. (d) AT. (e) SKD. (f)
CWD. (g) ReviewKD. (h) SRD. (i) LogitStdKD. (j) STONet. (k) PD. (I) CMHRD. (m) SCRKD. (n) GTs.
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Fig. 7. PR and F-measure curves visualization of 10 state-of-the-art methods. (a)-(b) 224224 PSPNet to 112x112 PSPNet on the ORSSD and EORSSD
datasets. (c) 224 x224 SegFormer to 112x 112 SegFormer on the ORSSD dataset. (d) 448x448 PSPNet to 112x 112 PSPNet on the EORSSD dataset.
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TABLE VI

ABLATION EXPERIMENTS OF PSPNET ON THE EORSSD DATASET.

No. | Resolution | MVCD MSFD DSD | Fg?

ST

Distilling from 224 x224 teacher to 112x 112 student

1 112x112 0.8284  0.8796
2 112x112 v 0.8417 0.8932
3 112x112 v 0.8434 0.8936
4 112x112 v 0.8401 0.8920
5 112x112 v v 0.8460  0.8941
6 112x112 v v v 0.8511 0.8952
Distilling from 448 x448 teacher to 224 X224 student
1 224 x224 0.8796  0.9135
2 224 x224 v 0.8866  0.9221
3 224 x224 v 0.8906  0.9232
4 224 x224 v 0.8853 09175
5 224 x224 v v 0.8920 0.9251
6 224 x224 v v v 0.8949 0.9270
Distilling from 448 x448 teacher to 112x 112 student
1 112x112 0.8284  0.8796
2 112x112 v 0.8429 0.8903
3 112x112 v 0.8460 0.8949
4 112x112 v 0.8399 0.8900
5 112x112 v v 0.8475 0.8951
6 112x112 v v v 0.8494 0.8965

@ ©

Fig. 8. Typical ablation predictions of 448 x448 PSPNet to 112x 112 PSPNet
on the EORSSD dataset, where false positives and missing parts are marked
in red and green, respectively. (a) RSIs. (b) GTs. (c) baseline. (d) +MVCD.
(e) +MSFD. (f) +MVCD+MSFD. (g) the fully proposed SCRKD.

the student model. However, when three synergistic dis-
tillation modules are combined in Table VI, the student
achieves an F-measure of 85.11% under the guidance of the
224 x224 teacher, but only 84.94% under the supervision of
the 448x448 teacher. These results indicate that a higher-
resolution teacher can indeed provide more finer-grained
structured knowledge, but the huge resolution gap between
448%448 and 112x112 limits the performance of combining
these three distillation modules, preventing the student from
learning more effectively from the higher-resolution teacher.
When combining MVCD and MSFD, superior performance
is achieved across all three cross-resolution scenarios com-
pared to introducing MVCD or MSFD separately. For instance,
a 448 x448 teacher model enables the 112x112 student model
to achieve a 1.91% gain in the F-measure score in Table VI,
demonstrating significant performance boosts. Furthermore,
with the addition of DSD to MVCD and MSFD, the distillation
potential of SCRKD is further unlocked across various cross-
resolution settings. Notably, the 224x224 student achieves

an impressive F-measure score of 89.49%, substantially mit-
igating the performance degradation caused by resolution
reduction. These results highlight the effectiveness of jointly
integrating the three distillation modules, which continuously
enhance the distillation capability of SCRKD to address the
inherent challenges of low-resolution RSI-SOD.

2) Qualitative Effects: For a more comprehensive visual-
ization of the effects of different distillation modules, Fig. 8
illustrates representative predicted saliency maps from various
ablation variants. The results indicate that the student model,
when equipped solely with either MVCD or MSFD, fails to
adequately address the issues of missed and false detection
stemming from insufficient low-resolution contextual infor-
mation. In contrast, the synergistic integration of MVCD and
MSFD, complemented by the full SCRKD model, markedly
diminishes the occurrence of missed and false detection pixels,
thereby producing saliency maps that exhibit a higher degree
of congruence with the ground truth annotations.

DSD loss coefficient = 20 DSD loss coefficient = 30

DSD loss coefficient = 10

Fig. 9. The variation of S-measure scores with respect to different hyperpa-
rameters on the ORSSD dataset for TransXNet-based SCRKD.

3) Impacts of Loss Coefficients: During the training phase
of SCRKD, the three distillation losses are jointly optimized
with Lsop. Following multi-task learning, we empirically
determine the balancing coefficients by considering their mag-
nitudes relative to Lsop, while ensuring Lsop contributes
dominantly to gradient optimization. To investigate the sen-
sitivity of overall performance to different hyperparameter
configurations, we conduct a case study on the ORSSD dataset
using TransXNet. As clearly shown in Fig. 9, the S-measure
exhibits varying degrees of degradation among three surfaces
when « or (8 is set either too high or too low. Notably, the
curve for v = 20 achieves higher peak performance compared
to v = 10 and v = 30, indicating the existence of optimal
value ranges for all three hyperparameters. Importantly, even
the lowest S-measure score in Fig. 9 remains above 92.3% and
maintains competitiveness with the results in Table IV, demon-
strating the robustness of our proposed distillation losses under
varying weight configurations.

E. Visualization Analysis

Here, to further elucidate the reasons behind the remark-
able performance gains of the proposed SCRKD framework
for cross-resolution RSI-SOD, we perform a comprehensive
visualization analysis of the presented MVCD, MSFD, and
DSD components to provide deeper insights. The typical
visualization results are illustrated in Figs. 10, 11, and 12.
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Fig. 10. Multi-view correlation map visualization on the EORSSD dataset.
(a) RSIs or GTs or error maps; (b)-(e) channel-wise correlation maps for four
stages; (f)-(i) height-wise correlation maps for four stages; (j)-(m) width-wise
correlation maps for four stages; (n) spatial feature maps. The first three
and last three lines show two individual samples. Each group of three lines
represents 224 x224 student, 448 x448 teacher, and the proposed SCRKD.
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Fig. 11. Typical feature visualization of 448x448 PSPNet to 224x224
PSPNet with our SCRKD on the EORSSD dataset. (a) RSIs. (b) GTs. (c) Error
maps. (d)-(f) Stagel features of student, our SCRKD, and teacher, respectively.
(g)-(1) Stage?2 features of student, our SCRKD, and teacher, respectively. (j)-
(1) Stage3 features of student, our SCRKD, and teacher, respectively.

1) Correlation Map Visualization: As illustrated in Fig. 10,
we present the correlation matrices of the student, teacher,
and SCRKD across multiple stages in channel-wise, height-
wise, and width-wise dimensions for two representative RSIs.
Our analysis reveals three key observations: First, the self-
correlation matrices of both teacher and student models exhibit
distinct characteristics across different stages and dimensions
for the same sample in Fig. 10(b)-(m), while demonstrating
varying patterns across different samples and hierarchical
levels. These multi-view self-correlation matrices encapsulate
crucial knowledge highly relevant to RSI-SOD, representing
one of the significant manifestations of performance varia-
tions caused by resolution differences. Second, to effectively
transfer this valuable knowledge from the high-resolution
teacher to the low-resolution student, we develop the MVCD
component. The implementation of MVCD induces a notable
transformation in the student model’s correlation matrices,
which progressively align with the characteristic patterns of
the teacher. This alignment, which we consider a fundamental
factor in performance enhancement, is clearly observable in
our ablation analysis. Third, after applying MVCD distilla-
tion, the student model’s feature representations reveal intu-
itively enhanced activation for salient objects compared to its
pre-distillation state in Fig. 10(n). This improved activation

provides critical clues for more accurate detection of remote
sensing salient objects, as evidenced by our qualitative results.
2) Feature Visualization: To demonstrate the differences
in feature representations among the high-resolution teacher
model, low-resolution student model, and SCRKD at various
stages, we visualize the spatial features of six samples across
three stages, as shown in Fig. 11. By comparison, we observe
that the teacher, benefiting from higher-resolution contextual
inputs, generates the most precise spatial activations for salient
objects. In contrast, the student, constrained by resolution
limitations, produces incomplete, less accurate, and less promi-
nent activations for salient objects. To address this deficiency,
we meticulously design a feature-level distillation technique
MSFD. After incorporating MSFD, the spatial features of
the student model exhibit closer alignment with those of the
teacher model, and the spatial activations for salient objects
are significantly enhanced. This improvement definitely cre-
ates favorable conditions for boosting detection performance,
visually demonstrating the positive contribution of MSFD.

@ (b) (© (d) (®) ® ) (h)

Fig. 12. Typical logits visualization of 448 x448 PSPNet to 224 x224 PSPNet
with SCRKD on the EORSSD dataset. (a) RSIs. (b) GTs. (c)-(e) Stagel logits
heatmaps for student, SCRKD, and teacher, respectively. (f)-(h) Stage5 soft
logits heatmaps when 7 = 4 for student, SCRKD, and teacher, respectively.

3) Logits Visualization: Finally, we also visualize the logit
maps of the student, teacher, and DSD as shown in Fig.
12, which represent the predicted saliency maps before the
sigmoid function. For Fig. 12(c)-(e), it can be observed that
the student struggles to suppress noise caused by complicated
backgrounds and exhibits weaker attention to salient regions.
In contrast, the teacher accurately and completely delineates
the detailed textures and contours of salient objects. After
integrating DSD, the student shows enhanced focus on salient
objects, thereby unlocking the distillation potential of SCRKD
and improving the detection capability. For the soft logit maps
of the final stage, as shown in Fig. 12(f)-(h), we find that
while the teacher excels at detecting salient objects, it fails
to provide soft labels that are helpful for logit distillation.
To address this challenge, we propose DSD, which decou-
ple the single-channel saliency logit map into two-channel
category logit map. Our findings indicate that incorporating
DSD enables the student to learn more reasonable soft logits
that better characterize salient and non-salient regions, thereby
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facilitating the student to effectively learn the dark knowledge
of saliency prediction level from high-resolution teachers.

V. CONCLUSION

In this work, we propose a cross-resolution distillation
framework SCRKD for RSI-SOD. To further boost the perfor-
mance for low-resolution models, we extend vanilla SCRKD
to Cascaded SCRKD. In our experiments, we find several
interesting insights as follows: 1) Under fixed teacher-student
resolution settings, a more powerful teacher (e.g., TransXNet
vs. PSPNet and SegFormer) can yield a stronger student. 2) For
a student with a fixed resolution, its performance degrades as
the resolution gap with the teacher increases, due to the larger
domain gap induced by higher-resolution teachers. 3) When
the resolution gap between student and teacher models exceeds
2x, our proposed Cascaded SCRKD can produce significantly
stronger student models compared to vanilla SCRKD with
arbitrary-resolution teachers. In future work, we aim to extend
the cross-resolution distillation framework to other remote
sensing dense prediction tasks.
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