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Transcending Pixels: Boosting Saliency Detection
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Abstract— Existing remote sensing image salient object
detection (RSI-SOD) methods widely perform object-level
semantic understanding with pixel-level supervision, but ignore
the image-level scene information. As a fundamental attribute
of remote sensing images (RSIs), the scene has a complex
intrinsic correlation with salient objects, which may bring hints
to improve saliency detection performance. However, existing
RSI-SOD datasets lack both pixel- and image-level labels, and it is
non-trivial to effectively transfer the scene domain knowledge for
more accurate saliency localization. To address these challenges,
we first annotate the image-level scene labels of three RSI-SOD
datasets inspired by remote sensing scene classification. On top
of it, we present a novel scene-guided dual-branch network
(SDNet), which can perform cross-task knowledge distillation
from the scene classification to facilitate accurate saliency
detection. Specifically, a scene knowledge transfer module
(SKTM) and a conditional dynamic guidance module (CDGM)
are designed for extracting saliency key area as spatial attention
from the scene subnet and guiding the saliency subnet to
generate scene-enhanced saliency features, respectively. Finally,
an object contour awareness module (OCAM) is introduced
to enable the model to focus more on irregular spatial details
of salient objects from the complicated background. Extensive
experiments reveal that our SDNet outperforms over 20 state-
of-the-art algorithms on three datasets. Moreover, we prove that
the proposed framework is model-agnostic, and its extension to
six baselines can bring significant performance benefits. Code is
available at https://github.com/lyf0801/SDNet.

Index Terms— Conditional guidance learning, dynamic class
activation map (CAM), optical remote sensing image (RSI),
salient object detection (SOD), scene knowledge distillation.

I. INTRODUCTION

RECENTLY, salient object detection (SOD) in optical
remote sensing images (RSIs) [1] has attracted much

research interest in remote sensing community. It aims to iden-
tify and locate various visually salient objects in complex RSIs
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Fig. 1. Illustrations of different saliency objects in several various scenes.
(a) Industrial facilities. (b) Transportation facilities. (c) Sports facilities.
(d) Scene-, object-, and pixel-level elements in an RSI.

and compute clear saliency maps (SMs). As revealed in [2],
SOD has extensive applications as a preprocessing technique
in numerous areas [3], [4], [5], [6]. However, the irregular
topology and scale diversity of man-made salient objects,
as well as the low contrast and complicated background of
aerial imagery, have presented many challenges to RSI-SOD.

Benefiting from the development of convolutional neural
networks (CNNs) and SOD in natural scene images (NSIs) [7],
[8], [9], RSI-SOD has witnessed substantial progress in
recent years. There are several public datasets [10], [11],
[12], [13] released as benchmarks for evaluating different
approaches. To tackle the above challenges, many sophisti-
cated methods have been proposed from various perspectives
and delivered excellent performance [14], [15], [16]. For
instance, SARNet [14] constructs semantic attention mech-
anisms at channel-wise and spatial levels to refine SMs.
HFANet [15] combines CNN and Transformer to model
local and global contexts simultaneously, and utilizes adjacent
feature alignment modules to aggregate multiscale salient
features. SRAL [16] designs a novel multitask network of
RSI-SOD with super-resolution and efficiently transfers the
image reconstructed knowledge to the learning procedure of
saliency detection. Nevertheless, the existing algorithms all
employ the encoder-decoder frameworks for training in a fully
pixel-wise supervised manner. They only perform semantic
understanding at object and pixel levels, but ignore an essential
property of RSIs, i.e., the scene. That is, the correlation
between scenes and salient objects, and the impact of intrinsic
dependencies on RSI-SOD, are still unexplored.

As shown in Fig. 1(d), scene, as an image-level attribute,
is higher than pixel- and object-level elements of RSIs, and
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can be exploited as a fundamental research subject [17].
The scenes of RSIs are closely connected with objects, and
this correlation is complex and intrinsic, with great interclass
similarity and intraclass variability [18]. In fact, salient objects
are highly correlated with the contextual information of their
remote sensing scenes, i.e., instances of a particular class of
objects appear with a very high probability in some specific
scenes [19]. As in Fig. 1(a)–(c), in an industrial scene, the
salient objects in RSIs are most likely to be storage tanks,
factories, etc. In a transportation scenario, the salient objects
might be cars, buildings, roads, etc. In a sports facility
scenario, the salient objects will most likely be ground track
fields, tennis courts, baseball fields, etc. To foster other tasks,
learning scene information from aerial images is a potentially
effective way [20]. For instance, Zhang et al. [21] introduce
a scene preprocessing step before performing super-resolution
and design multiple scene-independent super-resolution net-
works for fine-grained learning, while a similar idea is adopted
by Tao et al. [22] for vehicle detection tasks.

Thus, it would be very insightful to model the relation
between scenes and salient objects as well as to facilitate the
final RSI-SOD performance. Based on this observation, our
goal is to introduce more universal scene information of RSIs,
and to distill the knowledge of precise spatial localization
in scenes into the RSI-SOD task for more effective saliency
detection from complicated aerial images.

However, it is non-trivial to introduce scene information
into the existing RSI-SOD models and contribute to the final
detection results. We consider that the specific challenges can
be summarized in the following three points.

1) The existing RSI-SOD datasets only provide pixel-level
ground truths (GTs) of salient objects, and lack sound
definition and classification of specific scene categories.

2) How to effectively model and distill the accurate loca-
tion and edge information of category-agnostic salient
objects in aerial images from scene classification?

3) How to deploy scene knowledge to enhance the spatial
features of salient objects and perform dynamically and
conditionally guided learning for RSI-SOD?

To cope with the above challenges, we first consider the
specific knowledge of remote sensing scene classification [18],
observe the primary scene distribution of the three existing
RSI-SOD datasets, and then define 12 unified scenes. Fig. 2
illustrates the distribution of 12 types of scenes in these
three datasets. Specifically, we describe these scenes as air-
plane facilities, industrial facilities, bridges, ships, rural build-
ings, transportation facilities, highways, rivers, lakes, islands,
sports facilities, and others. It can be seen that these scenes
show various percentage distributions in several datasets,
which also reflects that the variability of scenes among
datasets is a great challenge for the generalizability of the
model.

Then, we propose a multitask learning (MTL)-based scene-
guided dual-branch network (SDNet), which distills precise
localization knowledge of salient objects from scene clas-
sification and then performs dynamic guided learning to
further compensate for saliency detection. As shown in Fig. 3,
the current mainstream RSI-SOD methods all utilize the

Fig. 2. Illustration of the percentage of 12 scenes in three RSI-SOD datasets.

Fig. 3. Illustration of the proposed approach versus mainstream RSI-SOD
models. (a) Current state-of-the-art encoder-decoder frameworks for RSI–
SOD. (b) Our proposed scene knowledge distillation model for RSI-SOD.

encoder-decoder architectures, feeding RSI and producing
SMs. In contrast, our proposed SDNet employs an MTL
framework to simultaneously learn image-level scene and
pixel-level saliency, and strengthen the decoding for saliency
parsing by scene knowledge transfer. To achieve this goal,
we fully exploit the scene subnet to generate multiscale scene
features and dynamic class activation maps (CAMs) [23].
With these ingredients, we design a novel scene knowledge
transfer module (SKTM) to obtain the scene-saliency repre-
sentational knowledge. On top of that, a conditional dynamic
guidance module (CDGM) is proposed to further guide the
learning of scene-enhanced saliency features for more accurate
salient object localization in RSIs. Furthermore, motivated by
Laplacian pyramid, we introduce an object contour awareness
module (OCAM) to enable the model to focus more on
irregular spatial details of salient objects from the compli-
cated background. Extensive experiments demonstrate that the
presented SDNet can reach excellent performance among the
three datasets. In addition, it can be successfully extended
to other SOD models and achieve noticeable performance
benefits over six baselines. The main contributions of this
article are listed as follows.

1) We first manually annotate scene labels for three existing
RSI-SOD datasets, providing supervised signals and
research insights to enable scene-aware multitask mod-
eling and image-level weakly supervised learning.

2) We present an MTL-based SDNet that combines scene
classification and SOD, and design a scene knowledge
distillation strategy to facilitate saliency detection.
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3) Two plug-and-play modules, SKTM and CDGM,
are proposed to extract scene-saliency knowledge
and generate scene-enhanced saliency representation,
respectively.

4) Extensive experiments show the superiority and model-
agnostic capability of SDNet. Typically, it exhibits
significant performance boosts in six models.

The remainder is presented as follows. Section II draws the
work related to scene classification and RSI-SOD. We describe
the methodology in Section III, and conduct adequate experi-
ments in Section IV. Section V concludes this article.

II. RELATED WORK

In this section, we present related studies of RSI-SOD, scene
classification, and scene-related visual models, respectively.

A. SOD in Optical RSIs
In the remote sensing community, researches on RSI-SOD

emerge early, when researchers apply traditional algorithms to
extract and model low-level features of RSIs [24], [25], [26],
such as luminance, texture, gradient, color, edges, or design
handcrafted features for saliency recognition. However, these
methods are not universally applicable due to their fixed
feature production and limited saliency accuracy.

With the development of CNN and the release of large-scale
datasets [10], [11], [12], [13], RSI-SOD has made unprece-
dented progress. There are numerous algorithms [14], [15],
[16], [27], [28], [29], [30], [31] proposed to cope with the
difficulties of complex background and low contrast of RSIs,
scale diversity of man-made objects, irregular topology, and
complex edges. For instance, Wang et al. [15] propose an
interactive guidance loss function with joint edge prediction
to extract irregular boundaries of salient objects effectively.
Cong et al. [29] introduce graph convolutions for reasoning the
spatial-wise and channel-wise relations of RSI-SOD. Several
edge-aware models have been proposed, such as EMFINet [30]
and MJRBM [12], which introduce boundary supervision
and embeds edge attention modules, respectively. Addition-
ally, many researchers investigate attention mechanisms for
RSI-SOD, i.e., utilizing channel and spatial attention blocks
for semantic feature refinement [14] or salient information
aggregation [32]. Recently, Liu et al. [16] present a cross-
task distillation-based model, which brings many insights
to transfer knowledge from super-resolution into RSI-SOD
efficiently, and significantly reduce the computation costs as
well as accelerate the inference of model.

Nonetheless, the existing methods all adopt the encoder-
decoder frameworks to perform pixel-wise saliency and
non-saliency prediction, considering only pixel-level features
for RSI-SOD, but never taking into account the intrinsic
correlation between the scenes of RSIs and salient objects.
To address this issue, we first propose the assisted learning of
remote sensing scene classification, and design an MTL frame-
work to combine both subtasks collaboratively in this article.

B. Scene Classification in Optical RSIs
The scene, as a basic attribute of optical RSIs, its classi-

fication is one of the most fundamental tasks in the remote

sensing community, and has been widely studied since the era
of deep learning [17]. Numerous scene classification datasets
have been proposed in the past six years, e.g., AID [17],
OPTIMAL31 [33], and NWPU-RESISC45 [18], which cover
30, 31, and 45 scene categories, respectively. They encompass
most scenarios in RSIs, such as bridge, industrial, river, beach,
airport, ship, highway, buildings, overpass, islands, etc.

On the basis of these datasets, the researchers have con-
ducted extensive, thorough investigations. Early studies focus
on fully supervised manners, utilizing multiscale convolu-
tional features for scene recognition [18], introducing spatial
attention mechanisms, channel attention mechanisms [34], and
recurrent attention mechanisms [33] to enhance features on
key regions, joint learning of local features of objects and
global features of images [35], etc. After that, unsupervised
learning, semi-supervised learning, and few-shot classifica-
tion have been greatly explored. For example, Lu et al. [36]
present the first unsupervised representation learning frame-
work for remote sensing scene classification. Huang et al. [37]
explore semi-supervised representation learning among differ-
ent datasets, and investigate a bidirectional alignment strategy
for cross-domain adaption. Li et al. [38] present an adaptive
match network with a few-shot attention mechanism in a
parallel manner, to focus on discriminative regions.

Recently, some novel network architectures and technolo-
gies have been introduced to build deep models for scene
parsing, such as vision transformer [39] and neural architecture
search [40]. For instance, a spatial-channel feature preserving
vision transformer [41] is proposed for remote sensing scene
classification. Furthermore, some fine-grained scene tasks have
been proposed to contribute to the community, such as mul-
tilabel classification [34] and multiscene classification [42].
In this article, inspired by the task of scene classification,
we introduce this task for auxiliary supervision and knowledge
transfer to build a novel RSI-SOD framework.

C. Scene-Related Visual Models for Image Analysis

The scene is a widespread knowledge that has been applied
in many visual tasks, including NSIs and RSIs, and researchers
have proposed a variety of scene-related models. To our best
knowledge, these models can be divided into three categories.

1) Without scene labels, this type of models simply learns
scene-aware contextual information [43], [44], [45],
[46]. For instance, Liu and Han [45] present a deep
spatial recurrent convolutional network, and combine
scene context modulation with local object context for
saliency parsing in NSIs.

2) According to individual scene categories, design
scene-independent models for various tasks, e.g., super-
resolution [21], radar object detection [47], building
extraction [48], vehicle detection [22]. For exam-
ple, Zhang et al. [21] employ a two-stage approach,
in which a scene classifier is designed to classify
low-resolution RSIs in the first stage, and then propose
separate super-resolution networks for each scene in the
second stage for specific learning among scenes.
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3) With scene labels, design MTL-based visual models that
consist of supervised signals for the main task and auxil-
iary scene classification. These main tasks contain object
detection [49], point cloud segmentation [20], oriented
object detection [19], cloud segmentation [50], etc. For
instance, Xu et al. [20] illustrate binary vector-based
scene descriptors for different scenes supervision and
utilize global information of point clouds as prior knowl-
edge for semantic segmentation [51].

Motivated by these studies, we first annotate the scene labels
for RSI-SOD, and present a scene-guided saliency model
with multitask supervision. Different from them, the proposed
framework not only learns both SOD and scene classifica-
tion, but strives to learn knowledge from scene classification
that facilitates saliency localization, and performs conditional
dynamic guided learning by cross-task knowledge distillation.

III. METHODOLOGY

In this section, we provide the methodology of the pro-
posed framework point by point. First, we present the
overview of the proposed SDNet in Section III-A, and
describe the methodology of SKTM, CDGM, and OCAM in
Sections III-B–III-D, respectively. Finally, the hybrid multitask
loss function is illustrated in Section III-E.

A. Overview of the Model Architecture

As shown in Fig. 4, the proposed framework consists
of four components. First, we utilize ResNet18 [52] as the
scene subnet for scene classification and scene-specific feature
extraction. For an input RSI defined as I ∈ R3×448×448,
we downsample its spatial size to 224 × 224, then feed it
into the scene subnet, and obtain the multilevel features S1–S5
as well as the scene probability vector pscene as follows:

S1, S2, S3, S4, S5, pscene = Fres18
(
F↓2×(I )

)
(1)

where Fres18(·) and F↓2×(·) refer to the function of ResNet18
and 2× spatial downsampling operation, respectively.

To obtain object localization information, we also define a
3 × 3 convolution and fully connected weights to generate a
dynamic optimal CAM [23], an input for scene knowledge
transfer in the training phase, defined as

C = argmax( FCAM(C3×3(S5) ⊗Wfc)) ∈ R1×448×448 (2)

where FCAM(·) denotes CAM generation, ⊗ is element-wise
multiplication, and argmax(·) indicates to select the optimal
CAM among scene categories. Ci×i (·) is the i × i convolution,
and Wfc illustrates the weights of the fully-connected layer.

Then, an encoder-decoder baseline named PSPNet [53]
is equipped as the saliency subnet to generate multiscale
saliency features F1–F5, which also serves as an input for
scene knowledge distillation in the subsequent process. After
that, the model enters a scene knowledge-induced learning
process with multilevel SKTM and CDGM for scene-saliency
knowledge and condition-guided saliency feature generation,
respectively. For an SKTM, it captures saliency feature Fi ,
scene feature Si , and dynamic CAM map C as inputs, and

obtains the fine scene-saliency context vector Ki for accurate
localization of salient objects, which can be defined as

Ki = SKTMi (Fi , Si , C) ∈ R1×H×W (3)

where SKTMi (·) is the function of SKTM. Then, CDGM
employs the fine scene-saliency context vector Ki to condi-
tionally guide the original saliency feature Fi to project the
scene-enhanced saliency feature for final RSI-SOD supervi-
sion, i.e.,

G i = CDGMi (Fi , Ki ) ∈ R256×H×W (4)

where CDGMi (·) denotes the process of CDGM, and G i indi-
cates the scene-enhanced saliency feature. Here, G1–G5 are
fed into a five-layer top-down, layer-by-layer summation
decoder to produce the predicted SMs as p1–p5, where the
decoder consists of a 3 × 3 and a 1 × 1 convolutions

pi =

{
Fdecoder

(
G i ⊕ F↑2×(G i+1)

)
, i = 4, 3, 2, 1

Fdecoder(G i ), i = 5
(5)

where ⊕ is element-wise summation, F↑2×(·) indicates 2×

bilinear interpolation, and p1 is the final saliency prediction.
Finally, Laplacian pyramid-based OCAM is introduced to

compensate for the object contours as well as foster RSI-SOD
in a supervised manner, as shown in Fig. 4(c).

B. Scene Knowledge Transfer Module

If we intend to facilitate RSI-SOD through scene classifica-
tion, the model must capture auxiliary and accurate spatial
localization of salient objects to compensate for the SOD
subnet. However, scene classification eventually delivers a
relatively weak category probability vector, and it is also
non-trivial to produce a considerable boost by merely concate-
nating scene features into the main decoder [50]. Fortunately,
existing deep learning techniques through the classification
probability, such as CAM [23], [54], can find the spatial
region with the optimal activation [55], which we believe
is inextricably associated with salient objects. To this end,
we present SKTM, which combines scene features and CAM
to distill knowledge from the scene branch, and project fine
scene-saliency context vector with accurate saliency spatial
information.

As illustrated in Fig. 5, the proposed SKTM first considers
the correlation between multiscale scene features and saliency
features to filter the negative spatial activation, and explore
Hadamard product as the scene-saliency representation, i.e.,

w
j,k
i =

exp
(
κ
(

F j
i , Sk

i

))
∑H×W

t=1 exp
(
κ
(

F j
i , St

i

)) . (6)

Here, κ(x, y) = ϕ(x)φ(y) is Hadamard relation production,
ϕ(·) and φ(·) are transform functions with 1 × 1 convolutions,
and wi refers to the i th scene-saliency representation.

To exploit scene information more adequately, we introduce
a dynamic CAM map as a priori spatial attention mechanism to
enhance the coarse scene-saliency representation, as follows:

mi = wi ⊗ Repeat(C) ∈ RC×H×W (7)

Authorized licensed use limited to: Wuhan University. Downloaded on September 30,2024 at 20:00:44 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: TRANSCENDING PIXELS: BOOSTING SALIENCY DETECTION VIA SCENE UNDERSTANDING 5616416

Fig. 4. Illustration of the proposed framework. (a) Scene subnet for multiscale scene features and dynamic CAM generation. (b) Saliency baseline (PSPNet)
for multiscale saliency feature generation. (c) Illustration of OCAM. (d) Scene-saliency knowledge distillation for conditionally dynamic saliency prediction.

Fig. 5. Illustration of the proposed SKTM with the multiscale pooling mixer.

where ⊗ denotes element-wise production, Repeat(·) indicates
channel-wise repetition, and mi is the i th coarse scene-saliency
knowledge as shown in Fig. 5.

Motivated by various kinds of token mixers [56], we then
deploy an effective strategy to refine the coarse knowledge
across spaces and channels, respectively, and generate the
fine scene-saliency context vector as accurately as possible.
Specifically, we first employ multiscale spatial pooling layers
with strides of 2, kernels of 1 × 1, 3 × 3, 5 × 5, 7 ×

7, to model the intricate correlation among different spatial
locations with a very low number of parameters, which can
be defined as

ri = P1(mi ) ⊕ P3(mi ) ⊕ P5(mi ) ⊕ P7(mi ) ⊕ mi (8)

where ri is the intermediate vector of stage i , and P j (·) refers
to j × j spatial pooling layer to conduct basic token mixing.

Finally, a channel-wise multilayer perceptron (MLP) is
introduced as the transform function to explore the relation
among different channels. In this phase, we also utilize a resid-
ual learning strategy to avoid useful information degradation

and produce a single-channel distilled knowledge as Ki . The
above-mentioned function can be mathematically defined as

Ki = Mean(Mc(ri ) ⊕ ri ) ∈ R1×H×W (9)

where Mc(·) represents MLP operating among channels,
and Mean(·) indicates the average function of channels to
project a single-channel Ki , i.e., fine scene-saliency knowledge
with accurate spatial activation. Compared to simple chan-
nel concatenation or element-wise multiplication strategies,
the presented SKTM can simultaneously perform a mutually
supervised fusion of scene features, saliency features, and
dynamic CAMs, filtering and eliminating spurious regions of
activation in an explicit manner. It could generate high-quality
spatial attention knowledge, which can serve as excellent
compensation and guidance information for RSI-SOD.

C. Conditional Dynamic Guidance Module

The scene subnet always has some samples with incorrect
classification predictions, and thus the model will generate
the wrong spatial activation in dynamic CAM, which cannot
deliver precisely localized spatial attention to salient objects.
Hence, if we completely trust the designed scene-saliency
knowledge, such as simply multiplying it with the original
saliency features to yield predicted saliency results, it will
result in an output that severely degrades the detection perfor-
mance and reduces the generalizability of the model. Based
on this deficiency, we propose CDGM to exploit the designed
scene-saliency knowledge for a conditionally dynamic guided
learning process of RSI-SOD, as revealed in Fig. 6.

To achieve this goal, we propose to adopt the fine
scene-saliency knowledge as the input to compute independent
attention for each RSI, and introduce dynamic convolutional
kernels [57], [58] and biases that can be optimized and
differentiated in the training phase to enhance the conditional
capability. As for a fine scene-saliency knowledge Ki , we first
utilize the global average pooling function to produce a
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Fig. 6. Illustration of the proposed CDGM with residual learning strategy.

hardware-friendly matrix PAvg(Ki ) ∈ R56×56, then flatten
it, and deploy an MLP with softmax operation and a large
temperature to project k-dimensional attention weights, which
can be defined as below

Atti = M
(
Fflatten

(
PAvg(Ki )

))
∈ Rk (10)

πk =
exp

(
Atti,k/τ

)∑
j exp

(
Atti, j/τ

) (11)

where Atti is the k-dimensional output vector of MLP (M),
Fflatten(·) indicates the flattening operation, PAvg(·) denotes
56 × 56 global average pooling function, and τ = 30 refers to
the temperature to control the sparsity of the output attention
weights {πk}. Obviously, the value of {πk} depends on the
scene-saliency context vector Ki of each optical RSI and thus
is not fixed. It varies from the individual inputs and serves
as the optimal integrated signal, which significantly increases
the dynamics of the conditional guidance capability of CDGM
compared with the static convolutional aggregation modules.
After gathering dynamic attention weights π(x), a series of
parallel convolutional kernels {Wk, bk} are deployed, which are
the differentiable parameters and can be optimized during the
training of the model. We integrate them with these weights
in a nonlinear way for every individual input x (e.g., RSI, Ki )
dynamically, to yield more powerful convolutional weights and
biases as follows:

W (x) =

k∑
i=1

πi (x)Wi , b(x) =

k∑
i=1

πi (x)bi

s.t. 0 ≤ πi ≤ 1,

k∑
i=1

πi (x) = 1. (12)

Here, to simplify the learning process of attention weights
π(x) and compress the kernel space, we utilize the sum-to-
one strategy and constrain

∑k
i=1(πi (x)) = 1, where k is equal

to 16. Note that these weights and biases are assembled vari-
ously for different fine-grained scene-saliency knowledge and
share the same attention as the input of conditional dynamic
guidance part in Fig. 6. Besides, all parallel convolutional
kernels share the output 256-D channels by combination.

Finally, we introduce a residual learning-based skip connec-
tion to accelerate the convergence of the module and facilitate
enhanced saliency features, and the total conditional guidance

process of CDGM can be represented as

G i = σ
(
W T(Ki ) · Fi + b(Ki )

)
⊕ Fi (13)

where σ(·) indicates PReLU activation function, W T is the
weight matrix of 3 × 3 convolution, and b is the bias
vector. In contrast to simple feature integration modules, the
proposed CDGM guides, compensates for, and improves the
learning efficiency of enhanced saliency features in a dynamic
manner. It can distill the scene-specific knowledge into the
saliency decoder in an effective way, and further facilitate the
localization results of salient objects from complicated RSIs.

D. Object Contour Awareness Module

It is crucial for RSI-SOD to recognize the edges and corners
of salient objects accurately. However, whether it is salient
feature Fi , scene feature Si , or CAM map C , they all focus on
the contextual features of the regions of interest and cannot
capture the contours of salient objects completely. Existing
adaptive saliency losses, e.g., CT [59], ACT [60], are only
able to enhance the supervised weights of edge information in
the decoding stage and particularly rely on the model to ensure
successful edge detection. This means that these losses must
be combined with excellent models to meet a considerable
supplement. To cope with the above issue, we propose to guide
the learning of object spatial details in a supervised manner
at the shallow level of the saliency baseline, instead of the
decoder’s output. Hence, a simple yet effective module, termed
OCAM, is introduced to compensate for the contours of salient
objects from complicated RSIs, as illustrated in Fig. 4(c).

We simplify contour detection for salient objects in RSIs as
a pixel-level binary classification problem. First, we introduce
multiscale Laplacian convolutional operators to generate con-
tour GT of salient objects from saliency GT map gs . With the
kernel −1 −1 −1

−1 8 −1
−1 −1 −1

,

Laplacian convolution with various strides (i.e., 1, 2, 4) could
extract abundant detailed information about edges and corners
of salient objects, and delivers Laplacian pyramid [61] as
shown in Fig. 4(c). Then, we deploy a 1 × 1 convolution
to aggregate these pyramidal contour maps for the trainable
reweighting and produce the dynamic object contour GT map
gc as follows:

gc = C1×1
([
L1(gs),F↑2×(L2(gs)),F↑4×(L4(gs))

])
(14)

where gc ∈ R1×448×448, [·, ·] indicates the channel-wise con-
catenation, Li (·) denotes Laplacian convolution with stride of
i , and F↑4×(·) represents 4× bilinear upsampling.

Then, we perform the supervised learning of contour for
the shallow F1–F3 of the saliency baseline, and equip several
convolutional layers as contour heads to produce the predicted
contour maps p1

c , p2
c , p3

c . Since contour detection is a task of
extremely imbalanced categories, effective supervision cannot
be performed by relying on binary cross-entropy (BCE) solely.
Following [62] and [63], we introduce dice loss as an auxiliary
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part for BCE to jointly optimize the contour supervision, and
thus the combined contour loss can be defined as

Lcontour =

3∑
j=1

(
Lbce

(
gc, p j

c

)
+ Ldice

(
gc, p j

c

))
(15)

where Lcontour is the contour loss, Lbce and Ldice denote BCE
and dice loss, respectively. They are clearly defined as

Lbce(x, y) =
1
N

N∑
i=1

(−yi log(xi ) − (1 − yi )log(1 − xi ))

(16)

Ldice
(

pi
c, gi

c

)
= 1 −

2
∑H×W

i pi
cgi

c + ε∑H×W
i

(
pi

c

)2
+

∑H×W
i

(
gi

c

)2
+ ε

(17)

where N indicates the total number of pixels, and ε is the
smoothing factor to avoid zero division which we set to 1.

E. Total Loss Function
As shown in Fig. 4(d), we perform multiscale supervision

of saliency detection among p1–p5, on which we impose the
joint function of BCE loss and WIoU loss as follows:

Lsaliency =

5∑
i=1

(Lbce(pi , gs) + Lwiou(pi , gs))/2i−1 (18)

where Lwiou refers to WIoU loss function as follows:

Lwiou(x, y) = 1 −

∑N
j=1

(
x j ⊗ y j

)
+ ε∑N

j=1

(
x j ⊕ y j − x j ⊗ y j

)
+ ε

. (19)

As our proposed framework has explicitly supervised sig-
nals for saliency detection, scene classification, and con-
tour detection. Therefore, considering the empirically similar
orders of magnitude of these loss terms, and to train the model
end-to-end, the total loss Ltotal could be simply defined as their
weighted summation as follows:

Ltotal = Lsaliency + Lscene + Lcontour (20)

where Lscene is a 12-category multiple cross-entropy loss, i.e.,

Lscene =

12∑
c=1

−log
(

pc
scene

)
gc

scene (21)

where gscene denotes the scene label vector we annotated.

IV. EXPERIMENTS

In this section, we first present experimental protocol, then
conduct the quantitative and qualitative comparison experi-
ments, ablation study, and model analysis, respectively.

A. Experimental Protocol

1) Datasets: We perform the following experiments on
three public RSI-SOD datasets in this article, i.e., as follows.

ORSSD [10] contains 800 optical RSIs, 600 ones of which
are used for training and 200 images for testing.

EORSSD [11] is an updated version of ORSSD that
includes 2000 RSIs with more complex scenarios. It divides
1400 images as the training set and 600 as the test set.

ORSI-4199 [12] is currently the most complicated
RSI-SOD dataset containing 4199 RSIs with complex back-
ground and diverse salient object types, of which 2000 are
used for testing and 2199 for training. In addition, it also
divides nine attribute patterns for a more comprehensive
evaluation.

2) Evaluation Metrics: In this article, we report four com-
mon quantitative indicators in the field of SOD as follows.

MAE [64] measures the pixel-level difference between the
predicted SM and the GT, i.e.,

MAE =
1

m × n

m∑
i=1

n∑
j=1

|SM(i, j) − GT(i, j)| (22)

where m and n are the height and width of RSI, respectively.
F-measure [65] is a weighted and combined metric to

define precision and recall between SM and GT as follows:

Fβ =

(
1 + β2

)
× Precision × Recall

β2 × Precision + Recall
(23)

where β2 is utilized to balance the precision over recall and
is equal to 0.3 according to [65]. In this article, we calculate
the max F-measure under different thresholds in [0, 255].

S-measure [66] employs the balanced structural information
of object-aware (So) and region-aware (Sr ) levels to measure
the structural similarity between SM and GT, i.e.,

Sm = α × So(SM, GT) + (1 − α) × Sr (SM, GT) (24)

where α is an equilibrium factor of value 0.5 referring to [66].
E-measure [67] is an indicator close to 1, which quantifies

both pixel-level matching and image-level statistics, defined as

Em =
1

m × n

m∑
x=1

n∑
y=1

ξSM(x, y) (25)

where ξSM indicates the enhanced alignment matrix of SM.
3) Implementation Details: For the saliency subnet,

we apply PSPNet [53] as saliency baseline. Following [15]
and [16], we perform the learning of the model on three
datasets separately and unify all images as 448 × 448 for
training and testing to calculate various quantitative metrics.
Additionally, the data augmentation techniques used in the
training process are consistent with the above work. For a
fair comparison, all deep learning-based comparative algo-
rithms [7], [8], [9], [11], [12], [14], [15], [16], [27], [28],
[29], [30], [31], [68], [69], [70], [71], [72], [73], [74], with
the same input and output settings and uniform data aug-
mentation scheme, are reproduced by their publicly available
source code. All of these deep learning-based algorithms are
deployed on the PyTorch1.8 toolbox, running on a single
NVIDIA GeForce RTX 3090 GPU, and equipped with the
Ubuntu18.04 system.

As for the proposed model, we load the pretraining weights
of ResNet18 and ResNet50 for the scene branch and saliency
baseline, respectively, and utilize kaiming-normal initialization
for the other parametric layers uniformly. The model is trained
iteratively via the stochastic gradient descent (SGD) algorithm
with the polynomial learning rate scheduler, where the number
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Fig. 7. PR and F-measure curves on the three RSI-SOD datasets of
17 state-of-the-art methods, where our proposed approach is marked in red.

of epochs is 100, the batch size is 8, the initial learning rate is
0.002, the momentum is 0.9, the weight decay is 5e−4, and the
learning rate update formula is 0.002 × (1−(iter/maxiter))0.9.
As for the proposed framework, it contains 55.98M parameters
with a considerable inference speed 38.89 ft/s.

4) Baselines: As revealed in Table I, we report 24 base-
lines among three RSI-SOD datasets for a fair comparison.
These approaches consist of two conventional methods (i.e.,
LC [75] and FT [65]), ten deep learning-based algorithms
for NSI-SOD (i.e., NLDF [7], DSS [8], RAS [9], Pool-
Net [68], PFAN [69], MINet [70], SCRN [71], GateNet [72],
F3Net [73], and PFSNet [74]), and 12 deep learning-based
methods for RSI-SOD (i.e., SARNet [14], DAFNet [11],
FSMINet [27], MCCNet [28], RRNet [29], MJRBM-V [12],
MJRBM-R [12], EMFINet-R [30], HFANet [15], ACCoNet-
V [31], ACCoNet-R [31], SRAL [16]).

B. Comparison With State-of-the-Art Methods

This section presents quantitative results, qualitative evalua-
tion, and attribute-based analysis of numerous state-of-the-art
methods and the proposed model, respectively.

1) Quantitative Comparison: For a comprehensive com-
parison, we select the most competitive 16 baselines and
the proposed method to plot the PR and F-measure curves,
as shown in Fig. 7. By observation, our method has the
most superior performance on both EORSSD and ORSI-
4199 datasets, i.e., the areas under the curves in red are the
largest. However, the curves of our approach overlap with
several methods on the ORSSD dataset and do not maintain a
significant superiority. We blame it on the small scale of the
ORSSD dataset, and thus the presented model cannot explore
adequate scene knowledge from this dataset.

Table I shows the quantitative results of four metrics,
i.e., F-measure (Fβ), MAE, S-measure (Sm), and E-measure
(Em), on three datasets of 25 algorithms. Among all competi-
tors, traditional methods provide no advantage in all metrics.
This is because they utilize low-level features or manual
operators to compute SM directly, thus, are not generaliz-
able in complex RSIs. These methods designed for natural
images all yield considerable performance. However, except
for PFSNet [74], which reaches the top three in very few
metrics, all other metrics are inferior to the algorithms for
RSI-SOD. The above fully justifies the previous work [15],
[16] that SOD methods designed for natural images cannot
be adapted to the characteristics of optical RSIs, such as
complex background, low contrast, object scale diversity,

complicated edges, and irregular topology. Most competitive
results are in those methods designed for RSI-SOD, including
EMFINet-R [30], HFANet [15], ACCoNet-R [31], SRAL [16],
and our proposed framework. Of these, SRAL is our most
recent work, notably achieving the second-best results on the
ORSI-4199 dataset.

As we can see, the presented model achieves the most
favorable results on both EORSSD and ORSI-4199 datasets,
with state-of-the-art performance on all metrics. In particular,
on the most challenging ORSI-4199 dataset, our SDNet is the
only one that reaches an Fβ over 0.86 and an MAE less than
0.032. The proposed model employs the fundamental PSPNet
as the saliency baseline, introduces a scene classification task,
and performs cross-task scene knowledge transfer via SKTM
and CDGM. It achieves such remarkable performance that is
attributed to the effectiveness of the proposed scene knowledge
distillation framework, especially SKTM and CDGM. With
respect to the differences in effectiveness among individual
modules, we will reveal them in detail in Section IV-C.

The proposed model, however, lacks excellent performance
on the ORSSD dataset, i.e., Fβ is lower than ACCoNet-R [31]
and Sm is lower than EMFINet-R [30] and HFANet [15]. This
is a critical phenomenon that deserves our attention, why our
model performs well on EORSSD and ORSI-4199 datasets
but shows mediocre results on ORSSD? The proposed model
strives to transfer scene knowledge into an existing saliency
baseline, PSPNet [53], rather than designing sophisticated
structures to extract multiscale contexts or global attention to
facilitate RSI-SOD. Therefore, combining the above findings,
we suggest that the ORSSD dataset, with only 200 test images,
is too small to adequately benefit from an MTL framework
and distill valid scene knowledge by the proposed SKTM and
CDGM for saliency performance boosting.

2) Qualitative Comparison: Fig. 8 shows the visualized
prediction results of 13 state-of-the-art algorithms in 13 typical
scenarios, including five ones designed for NSIs and seven
RSI-SOD algorithms. Overall, the presented SDNet predicts
the most complete and accurate SMs among various samples
over the competitors in Fig. 8(o). For instance, in the first
and fifth rows, our predictions successfully overcome back-
ground interference (i.e., road, crosswalk). In the third and
fourth rows, when competitors are in ambiguous recognition
or incomplete detection, our method still achieves effective
localization, and the predicted SMs are closest to GTs.

By vertical comparison, we find that all these approaches
designed for natural images in Fig. 8(c)–(g) do not perform as
well as those RSI-SOD ones, which shows that the algorithms
for natural scenes are not applicable to RSI scenes, and the
design of specialized SOD algorithms for RSI is essential.

3) Attribute-Based Analysis: The ORSI-4199 dataset
describes nine attribute scenarios, namely big salient object
(BSO), complex scene (CS), complex salient object (CSO),
incomplete salient object (ISO), low contrast scene (LCS),
multiple salient objects (MSOs), narrow salient object (NSO),
off-center (OC), and small salient object (SSO). Comparison
of the results under each attribute pattern can reveal more
in-depth performance drawbacks of different methods, provid-
ing insights for further algorithm investigations.
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TABLE I
RESULTS OF FOUR METRICS ON THREE OPTICAL RSI-SOD DATASETS. TOP THREE ARE MARKED IN RED, GREEN, AND BLUE, RESPECTIVELY

TABLE II
ATTRIBUTE-BASED EVALUATION ON THE ORSI-4199 DATASET [12]. THE AVERAGE SSIM METRICS FOR NINE ATTRIBUTES ARE REPORTED.

THE AVG. ROW SHOWS THE AVERAGE RESULTS FOR ALL ATTRIBUTES, AND TOP THREE IN EACH LINES
ARE MARKED IN RED, GREEN, AND BLUE, RESPECTIVELY

As illustrated in Table II, we select 15 competitive
approaches, and report their SSIM scores with our method
on nine scene patterns. Overall, the proposed framework
achieves the highest average score and reaches the best results
among six attributes, and is competitive in MSO and SSO
attributes, but is weak in OC scenarios. We find that SAR-
Net [14] and MJRBM [12] perform best in OC attributes.
Their common feature is that they both introduce spatial
attention mechanisms, resulting in better localization of OC
salient objects, which provides us with ideas for further
investigations.

C. Ablation Study

In this section, we conduct abundant experiments on the
ORSI-4199 dataset to reveal the effects of each module in the
proposed framework both quantitatively and qualitatively.

TABLE III
ABLATION EXPERIMENTS ON THE ORSI-4199 DATASET.

THE BEST RESULTS ARE MARKED IN BOLD

1) Baseline Setup: We adopt the classical fully convolu-
tional network, PSPNet [53], as the baseline, which utilizes
ResNet50 as a backbone and pyramid pooling module for mul-
tiscale context modeling. As shown in Fig. 9(c), it performs
poorly in these scenarios, producing too much missed and false
detection. Also, as revealed in Table III, it scores 0.0377 and
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Fig. 8. Typical visualization of 13 state-of-the-art methods. (a) RSIs. (b) GTs. (c) NLDF [7]. (d) DSS [8]. (e) RAS [9]. (f) PoolNet [68]. (g) PFAN [69].
(h) SARNet [14]. (i) DAFNet [11]. (j) MCCNet [28]. (k) RRNet [29]. (l) EMFINet-R [30]. (m) HFANet [15]. (n) ACCoNet-R [31]. (o) SDNet (Ours).

0.8466 in terms of MAE and Fβ , respectively, which are far
inferior to state-of-the-art competitors in Table I.

2) Effects of Only Scene Supervision: A worthy concern
is the impact of simple dual-branch supervised learning by
saliency and scene labels (i.e., without scene knowledge trans-
fer) on RSI-SOD performance. To verify this, we construct
the model variant named “baseline+scene subnet” and yield
its performance as shown in Table III. Compared with the
baseline, it brings some MAE and Sm benefits, but contributes
nothing to Fβ . The above proves that only joining the super-
vised signal by weak image-level labels does not bring a
sufficient boost to spatial saliency understanding, i.e., it cannot
improve the model’s detection ability of Precision and Recall.

3) Effects of SKTM: The intention of proposing SKTM
is to combine scene features with CAM spatial activation
information to filter and exploit scene-saliency context vector

that facilitates salient object localization. As shown in No.
4 of Table III, compared to baseline, “baseline+SKTM” shows
considerable performance gains in MAE, Fβ , and Em . In par-
ticular, it increased by 1.1% on the Fβ metric, which fully
illustrates the beneficial effect of the scene-saliency vectors
extracted by SKTM on the RSI-SOD task, i.e., the spatial
awareness of salient regions is greatly improved. Compared
with Fig. 9(c) and (d), the implementation of SKTM can
reduce the missed and false detection rates of the model in
these typical samples, such as buildings, bridge, and vehicles.

4) Effects of CDGM: After SKTM captures the fine-grained
scene knowledge vector, how to utilize this cross-task knowl-
edge to guide the optimal saliency interpretation dynamically
is a remaining issue. To this end, we consider the scene knowl-
edge as conditional guided attention to aggregate dynamic
convolutional kernels and build a novel module named CDGM.
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Fig. 9. Typical saliency error maps on the ORSI-4199 dataset, where red
and green pixels mean false negatives and missed detection, respectively.
(a) RSIs. (b) GTs. (c) baseline. (d) baseline+SKTM. (e) baseline+OCAM.
(f) baseline+SKTM+CDGM. (g) baseline+SKTM+CDGM+OCAM.

To reveal its effectiveness, we organize the ablation exper-
iments of No. 4 and No. 5 in Table III. By observation,
noticeable performance improvements are shown on all four
metrics, e.g., a 0.66% increase in terms of Sm . As shown in
Fig. 9(d) and (f), with the integration of CDGM into the model,
more salient regions can be distinguished, and in particular,
the rate of missed detection is greatly reduced. Overall, it is
the dynamic and conditional guidance mechanism of CDGM
that ensures the adaptability and generalization of the model,
yielding both quantitative and qualitative gains in saliency
understanding for various scenarios.

5) Effects of OCAM: The essential purpose of SKTM and
CDGM is to explore potential regions of salient objects from
the scene subnet, yet the edges and corners of such regions
are mismatched with those of salient objects. To enhance
the model’s perception of the object contours in the shallow
spatial feature layers, and inspired by Laplacian operators and
pyramids, we propose a simple contour awareness module, i.e.,
OCAM. How about its validity? We perform a comparative
analysis by No. 3 and No. 6 in Table III, and Fig. 9(f) and (g).
In contrast to No. 1 and No. 3 or No. 5 and No. 6 of Table III,
the inclusion of OCAM in the model witnesses a certain gain
in quantitative indicators, e.g., No. 1 and No. 3 exhibit MAE
gains greater than 0.1%, No. 5 and No. 6 show Fβ gains of
0.2%. Furthermore, we also demonstrate that OCAM indeed
qualitatively improves object contour awareness and further
contributes to the detection performance of the proposed MTL
model for RSI-SOD. As shown in Fig. 9, with the assistance of
OCAM, the predicted SMs for bridges, vehicles, and buildings
in rows 2–6 are closest to the GTs in terms of edges, corners,
and completeness, and also reach the most superior results
among all ablation competitors.

D. Model Analysis

Here, we conduct further experiments and visual analysis
to reveal the scene classification performance, visualization

Fig. 10. Confusion matrix of scene classification on three RSI-SOD datasets.

analysis of scene knowledge distillation, comparison of scene
guidance capability of SKTM and CDGM, comparison of
OCAM with other methods for object contour perception, and
design rationale of the dual-branch framework.

1) Performance Analysis of Scene Classification Task: The
most common metric to reveal the performance of scene
classification is the confusion matrix [35] and overall accuracy
(OA), and thus we report confusion matrices of scene branch
on three RSI-SOD datasets as shown in Fig. 10. By observa-
tion, the majority of probabilities on the diagonals dominate
these confusion matrices, reflecting that most test samples
have been correctly predicted with their scene labels. Notably,
in the confusion matrix of ORSI-4199, the model shows some
recognition failures in lakes and rivers. We blame this problem
on the tremendous interclass similarity between these two
scenes. Additionally, we calculate the OA of scene classifica-
tion on three datasets, i.e., 89.00%, 88.50%, and 85.72%. This
further illustrates the validity and rationality of our annotated
scene labels. In conclusion, these qualitative metrics fit the
distribution of remote sensing scene classification and serve
as solid support to verify the soundness of our model.

2) Visual Illustration of Scene Knowledge Guidance: To
reveal how our model performs accurate saliency understand-
ing and achieves state-of-the-art results both qualitatively and
quantitatively, we show an extensive feature map visualization
as shown in Fig. 11. Overall, the scene-saliency knowledge
(K1–K5) explored by SKTM is the most accurate for locating
salient objects, and CAM can provide rough location infor-
mation of salient objects, while saliency features F1–F5 and
scene features S1–S5 always suffer from some failures.

As illustrated in Fig. 11(a) and (b), for multiobject scenes,
the saliency branch struggles to cope with the interference
of complex background, and fails to focus on salient objects
such as airplanes, vehicles at deep layers, e.g., F4. For
Fig. 11(c) and (e) of the single object scenes, the scene features
also extract some object spatial information, such as the edges
of salient objects or the central region where they are located,
which shows that the scene features also might be helpful for
RSI-SOD. With respect to Fig. 11(d) and (f), the F4 and F5
explore partial regions of salient objects, but lack attention
to cover the complete objects. In contrast, the scene features
suffer from low contrast problems and mainly produce false
activation. In this case, CAM plays a critical role by combining
scene features and saliency features to exploit more accurate
and complete feature activation regions through SKTM.

To summarize, the scene features and CAMs output from
the scene subnet are helpful for localizing salient objects in
different scenes, and they can complement and compensate
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Fig. 11. Typical visualization of saliency features (F1–F5), scene features (S1–S5), dynamic CAM (C) and scene-saliency knowledge (K1–K5) delivered by
SKTM. For each sample, the first row is RSI and F1–F5, the second row is GT and S1–S5, and the third row is C and K1–K5, respectively.

TABLE IV
SCENE GUIDANCE COMPARISON OF SKTM AND CDGM ON ORSI-4199

for the inadequacy of the saliency baseline for object local-
ization and detection. Furthermore, Fig. 11 also demonstrates
the effectiveness of the proposed SKTM, which can positively
combine saliency features, scene features, and dynamic CAM
to yield more complete and accurate activation maps for
salient regions by the filtering and distillation mechanisms of
multiscale spatial mixers and channel transforms efficiently.

3) Scene Guidance Comparison of SKTM and CDGM:
Is it possible to integrate scene knowledge in a simple

Fig. 12. Performance improvements histogram for three quantitative metrics.

way? Obviously, we can integrate salient features with scene
features or CAM by channel-wise concatenation, element-
wise multiplication or summation. To compare the differences
between the above schemes and the proposed SKTM and
CDGM, we organize experiments on the ORSI-4199 dataset,
as shown in Table IV. Our findings are as follows. First, no
matter what plain approach is deployed, the scene features and
dynamic CAM both have a certain promotive effect on RSI-
SOD, with various metrics exceeding the baseline. Second,
when only CAM or scene features are introduced, the single-
channel dynamic CAM indeed delivers a better guidance
capability for RSI-SOD, although the latter has multiple scales
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Fig. 13. Typical visualized prediction results of six algorithms with and without the proposed framework. (a) RSIs. (b) GTs. (c) PSPNet [53]. (d) PSPNet+Ours.
(e) F3Net [73]. (f) F3Net+Ours. (g) FSMINet [27]. (h) FSMINet+Ours. (i) MJRBM-R [12]. (j) MJRBM-R+Ours. (k) ACCoNet-R [31]. (l) ACCoNet-R+Ours.

TABLE V
OBJECT AWARENESS COMPARISON OF OCAM ON ORSI-4199

and channels. Third, the proposed SKTM outperforms these
three vanilla aggregation approaches, and it combined with
CDGM can achieve a more desirable performance among these
competitors. 1) No matter what plain approach is deployed,
the scene features and dynamic CAM both have a certain
promotive effect on RSI-SOD, with various metrics exceeding
the baseline. 2) When only CAM or scene features are
introduced, the single-channel dynamic CAM indeed delivers
a better guidance capability for RSI-SOD, although the latter
has multiple scales and channels. 3) The proposed SKTM
outperforms these three vanilla aggregation approaches, and
it combined with CDGM can achieve a more desirable perfor-
mance among these competitors.

4) Object Awareness Comparison of OCAM: As presented
in Table V, we show the comparison of OCAM with two
improved cross-entropy losses, i.e., CT [59] and ACT [60].
We find that these two modified losses do not offer gains in
quantitative metrics and are even marginally weaker than the
ordinary BCE loss. We infer that with the support of SKTM
and CDGM, the above improved losses cannot make efforts
on this basis anymore. Instead, the explicit and complete
supervision of the object contours and boosting the awareness
ability of shallow features for object edges by OCAM is a
feasible solution to further promote RSI-SOD.

5) Design Rationale of Dual-Branch Framework: If we do
not introduce a scene branch (like ResNet18) to extract scene
features, and just equip a fully connected layer on the end of
saliency baseline for scene classification, would such a frame-
work also have comparable performance? To verify this idea,
we conduct the experiments shown in Table VI. Unfortunately,
the shared ResNet50 [52] as backbone struggles to achieve the
performance of the dual-branch architecture. We believe that

TABLE VI
BACKBONE COMPARISON OF SALIENCY AND SCENE BRANCHES

the two tasks, scene classification and RSI-SOD, are char-
acteristically independent and mutually exclusive. A shared
encoder would only confuse the spatial distribution of these
two features and fail to achieve the goal of scene knowl-
edge distillation. Besides, we consider PVT [76] as a scene
branch to encode self-attention-based scene features, but such
a model is inferior to ResNet18. A possible reason is that the
inductive bias of convolution is very favorable for image-level
classification of small-scale datasets. In summary, although
the introduction of ResNet18 to design the dual-branch model
brings a certain number of additional parameters, it achieves
our goals and significantly contributes to RSI-SOD.

E. Scene Knowledge Transfer Is Model-Agnostic

In this section, we show that the proposed model is agnostic
to the structure of saliency baselines. Specifically, we extend
the proposed scene-aware framework to six state-of-the-art
SOD algorithms, i.e., three NSI-SOD methods, PSPNet [53],
GateNet [72], F3Net [73], and three RSI-SOD approaches,
FSMINet [27], MJRBM [12], and ACCoNet [31]. These six
algorithms employ various encoders and design distinctive
network structures with widely varying model capacities and
parameter numbers. To demonstrate the model-agnostic capa-
bility of our framework, we perform a full comparison from
both quantitative and qualitative aspects.

Table VII reports the results of a series of experiments
under the same input settings on three RSI-SOD datasets.
Overall, the model integrated with the proposed MTL frame-
work exhibits significant improvements in most metrics on
all datasets. As for the parameter cost of six baselines, the
total number of parameters of proposed three contributive
modules, SKTMs, CDGMs, and OCAMs, is 5.99M, 7.03M,
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TABLE VII
QUANTITATIVE RESULTS OF SIX STATE-OF-THE-ART METHODS ON THREE RSI-SOD DATASETS WITH AND WITHOUT THE PROPOSED FRAMEWORK

6.01M, 6.27M, 12.84M, and 11.49M, respectively. That is, the
number of parameters introduced by the proposed modules is
relatively light when added to the existing models. As shown
in Fig. 12, the Fβ metric still exceeds the baseline by a large
margin when our scene-guided SDNet is implemented on this
baseline. The above illustrates that the proposed framework is
a universal model that does not depend on any specific model
structure, but instead performs scene knowledge distillation
that facilitates saliency localization.

To reveal how the proposed framework contributes to the
performance of RSI-SOD, we provide some comparative pre-
diction results of the five models on the ORSI-4199 dataset
in Fig. 13. By comparison, the upgraded models combined
with scene-saliency knowledge show better detection results
in various scenarios. Specifically, the updated models reduce
the false detection rate of background and non-salient objects,
and improve the saliency accuracy in rows 1–3, including air-
planes, vehicles, and storage tanks. This is precisely because
of the introduction of scene knowledge, which avoids the
inadequacy of pixel-level supervision and overcomes the
erroneous detection of background and non-salient objects.
We believe that it is the most critical factor for which scene
knowledge distillation can potentially boost RSI-SOD.

V. CONCLUSION

In this work, we design a universal, effective, and
model-agnostic scene knowledge distillation framework for
RSI-SOD. To achieve this goal, we first define 12 types
of scene categories and annotate three RSI-SOD datasets
with image-level scene labels. Then, we couple the saliency
baseline with a parallel scene subnet to extract both saliency
features and scene features. Considering the weakness of
image-level supervision, we introduce dynamic CAM in the
scene subnet to explore the localization of salient objects.
Then, we propose a novel SKTM to integrate scene fea-
tures, dynamic CAM, and saliency features to obtain the
saliency region activation as accurately as possible. To achieve
conditionally dynamic guidance strategies, an adaptive mod-
ule named CDGM is presented to deliver guidance from
scene knowledge to enhanced salience features. Furthermore,
a simple yet effective module named OCAM is proposed to
boost the learning of spatial details and contours of salient

objects in a supervised manner at shallow levels. Extensive
experiments demonstrate that the proposed algorithm exceeds
more than 20 state-of-the-art methods both quantitatively and
qualitatively.

In the experiments, we employ ablation studies to analyze
the effectiveness of the proposed SKTM, CDGM, and OCAM.
We also show the soundness of our annotated scene classi-
fication labels by means of confusion matrices. In addition,
we justify the superiority of the proposed modules over various
existing methods or simple feature fusion strategies. Finally,
we also explain why the presented model can facilitate saliency
understanding, and reveal the model-agnostic ability of scene
knowledge distillation through feature visualization.

In the future, we will exploit the scene labels presented
in this article as weakly supervised signals for RSI-SOD to
investigate image-level weakly supervised learning algorithms.
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